Warranty

This document is supplied on an "as is" basis with no warranty and no support.

Limitations of Liability

In no event shall eEye Digital Security be liable for errors contained herein or for any direct, indirect, special, incidental or consequential damages (including lost profit or lost data) whether based on warranty, contract, tort, or any other legal theory in connection with the furnishing, performance, or use of this material.

The information contained in this document is subject to change without notice.

No trademark, copyright, or patent licenses are expressly or implicitly granted (herein) with this manual.

Disclaimer

All brand names and product names used in this document are trademarks, registered trademarks, or trade names of their respective holders. eEye Digital Security is not associated with any other vendors or products mentioned in this document.

© 2004-2005 eEye Digital Security. All rights reserved. | R-M-031405

This document contains information, which is protected by copyright. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of eEye Digital Security.

Collateral Information

For the latest updates to this document, please visit:
http://www.eeye.com/partners

Revision: 5-2-12
Table of Contents

Introduction
- Preface ... 1
- Audience .. 1
- Customer Support .. 1
- Conventions Used in this Manual ... 1
- Collateral Information ... 1

Installation
- Installation Requirements .. 1
- Installing Retina from the CD-ROM .. 1
- Opening the Installation Wizard with Run Dialog 7
- Installing Retina from the Command Line .. 8
- Uninstalling Retina ... 10
- Uninstalling Retina from the Command Line ... 12
- Retina Sessions ... 13
- Starting Retina .. 13
 - Startup Message ... 13
- Using the Retina Interface .. 13
- Menu Bar .. 13
- Shortcut Bar ... 13
- Status Bar ... 15
- Tabs Pane ... 15
- Options Dialog ... 15
- Using the Getting Started Wizard ... 16

Using the Discover Tab
- Accessing the Discover Tab ... 25
- Starting a Discovery Scan ... 25
- Creating a New Address Group from Scan Results 28
- Appending to an Existing Address Group .. 29
- Clearing Discovered Items .. 30
- Sorting the Scan Results .. 30

Using the Audit Tab
- Accessing the Audit Tab .. 32
- Starting an Audit Scan .. 33
 - Audit Results ... 35
- Creating and Modifying Groups ... 37
 - Port Groups ... 37
 - Address Groups .. 38
 - Audit Groups ... 39
 - Always Groups ... 40
- Credential Management ... 40
 - Overview .. 40
 - Deployment/Installation Decisions .. 40
 - Local Access to non-Windows™ devices .. 40
 - Managing Credentials ... 42

Using the Remediate Tab
- Accessing the Remediate Tab ... 44
Table of Contents

Generating a Remediation Report...45
Printing a Remediation Report ...46
Editing a Remediation Report in Microsoft Word™.................................46
Saving a Remediation Report ..46

Using the Report Tab..47
Accessing the Report Tab ...47
Generating a Report ..48
Printing a Report ..49
Saving a Report ...49

Scheduling Scan Jobs..50

Using the Scan Jobs Pane ...52

Completing Scan File Procedures ..54
Opening a Scan File ..54
Deleting a Scan File ..54

Options...55
Customizing Retina ..55
General Options ..55
 Appearance ..56
 Logging ...56
 Auto Update ...57
 Central Policy ..57
Event Routing ..57
 REM ...57
 OPSEC ...57
Scanner ..57
 Performance ...58
 Reliability ..59

Retina Extras ..60
Using a DSN to Store Session Data...60
Viewing Previous Jobs from a DSN ..60

Auto Update ...61
What is Auto Update ..61

Manual Update ...62

License Management..65
Running Retina for the First Time ...65
Migrating Retina to a New Machine ...65
Terminating a License ...66

Retina Audit Wizard ...67

Using the Plugins Wizard ..79

Using Retina From the Command Line ..80
Retina.exe: ..80
RetRPC_Client.exe ..80
Introduction

Preface

The Retina Network Security Scanner is designed to work in conjunction with your existing systems, networks, security packages, databases, and user interfaces. This enables you to proactively guard against intrusion by regularly testing the integrity of your network to uncover and fix potential security weaknesses.

Audience

This manual is intended for network security administrators who are responsible for protecting their organization's computing assets. Readers are expected to be familiar with networking and security concepts, and should be capable of performing routine network administration tasks.

Customer Support

eEye customer support can be reached by completing a support request form on the Contacts or Support page of our Web site at http://www.eeye.com/. The most up-to-date customer service information is posted on the eEye Web site.

Conventions Used in this Manual

The following list shows typographic and usage conventions of this manual:

Bold text represents commands, interface buttons, and dialog names, except when they appear in window examples or the contents of files.

Purple underline text indicates a hypertext link to a topic within the manual or a Web site.

Monospace text represents context specific values including Windows™ NT path names.

Underline Character underline represents the shortcut key or key combination you can enter as a command to cause the specified function to occur.

For example, if the command is **Add rule**, you can press the letter **A** on your keyboard to display the wizard that you can use to create a rule.

Collateral Information

For the latest updates to this document, complete the following:

- Log in to https://www.eeye.com/clients from your Internet browser.
- Enter your **Client Username** and **Password** in the provided fields.
- Your Client Username and Password are provided in your purchase confirmation e-mail.
- Click the **Product Documentation** link.
- Click the **Retina User Manual** link.
- Click **save** to download a copy of the manual.
- The **Security Page** displays links to eEye product user manuals.
- Click the link of the manual you want to view.
Installation

Installation Requirements

To install the eEye Retina Security Scanner, your server must meet at least the following minimum system requirements:

- Windows NT™ Version 4.0 SP3 or higher (Windows 2000 or 2003 Server recommended)
- Internet Explorer™ Version 4.01 or higher
- 32 MB of memory
- 16 MB of free disk space
- Internet connection (optional for remote scanning, required for regular updates)

To install the eEye Retina Security Scanner, we recommend the following system:

- Windows 2000™ or 2003 Server
- Internet Explorer™ Version 5.5 or higher
- 512 mb of memory
- 1 gb of free disk space
- Internet connection

Installing Retina from the CD-ROM

If you meet the system requirements specified above, complete the following steps to install Retina from the provided CD-ROM. eEye recommends that you exit all Windows™ programs before you run the Retina Installation Wizard

Insert the Retina CD into your workstation’s CD-ROM drive.

1. Select the CD-ROM drive, and then click RetinaSetup.exe.

Note: If the Auto Play option is disabled for your CD-ROM drive, access the CD-ROM drive through Windows™ Explorer or My Computer and double-click on the RetinaSetup.exe file.

The Welcome screen of the Retina Installation Wizard appears.
2. Click **Next >**.
The **License Agreement** window appears.
Review the End-User Software License Agreement.

You must accept the license agreement to continue using the Retina Installation Wizard.

3. Click Yes.
 The Destination Folder window appears.
This window allows you to select the directory where the installation wizard will install the Retina files.

4. Do one of the following:
 - Accept the default destination folder: `C:\Program Files\eEye Digital Security\Retina 5`.
 - Click Browse, and select a folder where you want the Retina files to be installed.

5. Click **Next >**.
The Ready to Install the Application window appears.
6. Click **Next >**.
The install program displays a progress bar and shows the files as the application copies them to your system.
Once Retina is completely installed, the following screen displays to confirm a successful installation.
7. Click **Finish**. The Retina Installation Wizard closes. If reboot is required the Installer Information window appears.

8. If the window appears, do one of the following:
 - Click **OK** to have the installation program restart your system so the changes can take effect.
 - Click **Cancel** if you plan to restart your system manually later.

Opening the Installation Wizard with Run Dialog

Complete the following steps to open the **Retina Installation Wizard** from Windows™ Run Dialog rather than directly off the CD-ROM. eEye recommends that you exit all Windows™ programs before you run the **Retina Installation Wizard**.

Note: **Make sure you have inserted the Retina CD into your workstation’s CD-ROM drive.**
1. Click the Windows™ Start button.
2. Click Run from the list of options.
The Run dialog box appears.

3. Type the drive letter of your CD-ROM drive.
 For example, enter D:\ if your CD-ROM drive is the D drive.

4. Type RetinaSetup.exe after the CD-ROM drive letter.
 In the following example, the entire path is D:\RetinaSetup.exe

5. Click OK.
 One of the following occurs:
 • If you entered the correct path for RetinaSetup.exe, the Welcome window of the Retina Installation Wizard appears.
 • If you entered the incorrect path to RetinaSetup.exe, an error message appears.
 • If need be, complete the following steps to display the Welcome window of the Retina Installation Wizard:
 • Click Browse.
 • Find and double-click the Retina Setup icon.
 • Click OK when the Run dialog box reappears and displays the path name you selected.

 The following example is the Welcome window of the Retina Installation Wizard.

Installing Retina from the Command Line

Complete the following steps to open the Retina Installation Wizard from the Windows™ Command Prompt rather than directly off the CD-ROM. eEye recommends that you exit all Windows™ programs before you run the Retina Installation Wizard.

1. From the command prompt change directories to the location of RetinaSetup.exe (i.e. CD \windows\temp).
2. Then enter “RetinaSetup” and press enter.
At this point you can also use one or more of the following command line switches:
- REINSTALLMODE=“amus” – This will cause all files to be overwritten whether they are newer than the installation files or not.
- /qn – Completely silent. No User interface is displayed. If a reboot is required, Windows Installer will automatically reboot the system at the end of installation.
- /qb – Basic user interface. Only a progress dialog is displayed to the user. If a reboot is required, Windows Installer will prompt the user to reboot.
- INSTALLDIR=“…” - Installation folder (where … is the path to install). Set this property to change the default installation path.
- CREATEDESKTOPICON=“0” – Disables creation of a desktop icon for Retina. This option is enabled by default. Set to 0 to prevent creation of the icon.
- CREATEQUICKLAUNCH=“0” – Disables creation of a quick launch icon for Retina. This option is enabled by default. Set to 0 to prevent creation of the icon.
- /l*v "C:\RetinaInstallLog.txt" - Enables full logging. This should only be used for debugging if problems occur during installation.
- REBOOT=“ReallySuppress” – Used to suppress the automatic reboot when using the /qn silent option above. The reboot still needs to occur, for the software to run properly.
- SERIALNUMBER=“…” – Sets the serial number (where … is the actual serial number to use).
- CFPATH=“…” – Path for Common eEye Digital Security files such as eEye Auto Update. If another eEye product is already installed, this parameter is ignored since the common path must be the same for all eEye products.

3. The Welcome screen of the Retina Installation Wizard appears.
4. Continue from step 3 in Installing Retina from the CD-ROM (page 1).
6. Go to step 3 of Installing Retina from the CD-ROM for procedures on using the Retina Installation Wizard to install Retina.

Uninstalling Retina

Complete the following steps to remove Retina from your workstation using the Retina Uninstall Wizard. eEye recommends that you exit all Windows™ programs before you run the Retina Uninstall Wizard.

1. Click the Windows™ Start button.
2. Go to Settings and click Control Panel.
 The Control Panel appears.

3. Click Add/Remove Programs.
 The Add/Remove Programs window appears.
4. Click Retina from the list of installed programs.
5. Click **Remove**. Windows™ displays a prompt to allow you to continue the uninstall of Retina. Select **Yes** to continue.

6. The uninstall displays a prompt asking if you would like to remove your Retina license from the machine. Select **Yes** to remove the license, or **No** to keep the license for later use on the same machine.
7. A progress bar displays, showing the status of the uninstall. When the uninstall has completed, the progress dialog closes.

In some system configurations, a system reboot may be required in order to complete the uninstall. If this is the case, the uninstall will prompt if you would like to reboot now.

Uninstalling Retina from the Command Line

Complete the following steps to remove Retina from your workstation using the Windows™ Installer from the command line. eEye recommends that you exit all Windows™ programs before you run the Windows™ Installer.

1. Open the Windows™ Command Prompt.
2. Enter "Msiexec.exe /x {59404E7D-BE5F-4668-9BDF-52C98FCA09D1} " and press enter.
3. Follow the prompts.

There are a number of options available to uninstall from the command line. These are:

- `REMOVELICENSE="1"` – Remove the license during uninstall without prompting.
- `REMOVELICENSE="0"` – To keep the license without prompting during uninstall.
- `REMOVECONFIGURATION="0"` – To keep your configuration data without prompting.
- `REMOVECONFIGURATION="1"` – To remove configuration data without prompting.
Retina Sessions

Starting Retina

Complete the following steps to start the Retina Interface:

1. Click the Windows™ Start button.
2. Click Programs > eEye Digital Security > Retina Network Security Scanner

Note: If this is the first time you’ve used Retina, the License Management screen will appear. See License Management on page 65, for instructions on installing your Retina license.

Retina starts and the main menu of the interface appears as shown in the following section.

Startup Message

To have Retina display information prior to starting, such as access warning messages. Place the text warning into a file named “WarningInfo.htm” in the Retina installation directory. This file will display in a text box when Retina starts. The user will have to click the OK button to start Retina or close the window to abort it. This text box is an HTML display control, so common HTML elements may be used to add text formatting.

Using the Retina Interface

The Retina Interface is the first window that appears when you log on to the Retina software. You can select the Retina features that you want to use from the toolbar or the provided tabs. The toolbar also provides options you can use to navigate to the next or previous window. Drop-down menus provide lists of commands.

The Retina Interface always saves your preferences and displays your settings from previous sessions.

Menu Bar

The Retina Interface drop-down menus provide standard commands you can select. The menu bar always appears at the top of the Retina Interface window.

The following drop-down menus are provided from the Retina Interface:

File – to open scan files and set DSN locations
Edit – normal cut, copy and paste editing functions
View – display or hide the QuickScan, Explorer or Status bars.
Tools – audits and plugins wizards; access to address, audit and port group modification dialogs; credential management; updates and program options
Help – links to product help, support, eEye sales, license management and information about the product version

Shortcut Bar

Retina displays the following shortcut bars in the left vertical windowpane:

Tasks
Other Places
Help and Support

Tasks: appears at the top left pane of the Retina Interface window, and displays options for the selected Retina security task tab. For example, the shortcut bar for the Remediate Tasks menu displays tasks including, Generate Reports and Print Reports.

Other Places: appears below the Tasks shortcut bar at the middle left pane of the Retina Interface window. This displays the Retina tasks (except the task that is currently selected) that you can select and use such as Audit, Reports, Remediate, and Options.
Help and Support: appears below the other shortcut bars at the bottom left pane of the Retina Interface window. This provides options you can select to view general information about the Retina Network Security Scanner and eEye Digital Security Solutions.

Status Bar

Retina uses the status bar at the bottom of the window to display messages from the task Retina is currently processing.

Tabs Pane

The Tabs pane is the main window of the Retina Interface. It displays tabs you can select to use the features associated with each Retina task. You can select from the following tabs:

- Discover
- Audit
- Remediate
- Report

Options Dialog

The Options dialog allows you to set your preferences for various Retina settings, such as event routing, automatic updates, scanner tuning and other general configurations.

To access the Options dialog, select Tools > Options.

The following example shows the Options dialog. The General tab displays by default when you select Options.
Using the Getting Started Wizard

The Retina Getting Started Wizard provides a brief introduction to using the Retina Network Security Scanner to perform a vulnerability scan and analyze the results.

Complete the following procedure to use the Retina Getting Started Wizard:

 Note: The wizard automatically also appears after you install Retina.

The Welcome to Retina window appears.
2. Click **Next >** on the **Retina Getting Started Wizard**. The **Beginning a Scan** window appears.
3. Select the **Audit** tab on the Retina Interface.
4. Click **Next >** on the **Retina Getting Started Wizard**. The Scanning a Range of IP Addresses window appears.

![Scanning A Range Of IP Addresses](image)

Scanning A Range Of IP Addresses

To scan a range of IP addresses, select **IP Range** from the **Target Type** dropdown. The IP Range interface will then be displayed:

- **Target Type:**
 - IP Range

- **From:**
 - 192.168.2.1

- **To:**
 - 192.168.2.254

Enter the From and To IP addresses. Once you have completed specifying your IP Range, click the **Scan** button to begin the scan.

5. Do one of the following from the **Audit** tab:
 - Enter an IP address for Retina to scan in the Address field, or complete the following procedure to enter a range of IP addresses.
 - Enter a range of IP addresses for Retina to scan as follows:
 - Click the **IP Range** radio button
 - Enter an IP address in the **From** field
 - Enter another IP address in the **To** field
 6. Click **Scan** from the **Audit** tab.
 The status bar displays the scan’s progress. When the scan is complete, the main Retina pane displays general information and audit details for the selected IP address(es).

7. Click **Next >** on the **Retina Getting Started Wizard**.
 The Selecting Scanned Ports window appears.
8. Click **Next >** on the **Retina Getting Started Wizard**.

The **Selecting Audit Groups** window appears.
9. Click **Next** > the **Retina Getting Started Wizard**.
The Analyzing Scan Results window appears.
10. Review the scan information for the selected IP address(es) that appears in the main Retina pane of the Audit tab. The General section displays information including the IP addresses, report date, domain name, and so on.

The Audits section displays images that represent the highest risk level of the audits found on the select system. The image is color coded to match Retina's audit risk level settings (see Audit Results on page 35 for more information).

11. Click any entry from the Audits section to display more information in the Details pane.

12. Click Next > on the Retina Getting Started Wizard. The Retrieving Scan Results window appears.

14. Select the Reports tab on the Retina Interface if you want to create a report of your scan results. Then, click Generate.

The report you created appears in the Results pane of the Retina Interface. Use the scroll box to move vertically through the report.

To print your report, click Print Report from the Report Tasks shortcut bar.

15. Click Next > on the Retina Getting Started Wizard.

The Printing An Executive Report window appears.
16. Click **Next >** on the **Retina Getting Started Wizard**. The Additional Information window appears.

A report of Retina's scan results can be printed from either the Remediate or the Report tabs. To create an Executive Report select the **Report** tab. Then select the desired options under configuration and click the **Generate** button.

Your report will appear in the "Results" window. You may then print the report by selecting the "Print Report" task in the "Report Tasks" window, or the "Print" icon from the tool bar. You can also open the report in "MS Word™" by selecting "Edit Report in Microsoft Word™" in the "Report Tasks" window.

You now have enough information to perform basic vulnerability scans of your network.

For further information on using Retina, including information on other scanning options, select **Contents** from the **Help** menu.
17. Click **Finish** to exit the **Retina Getting Started Wizard**.
Using the Discover Tab

The Discover tab provides the ability to scan unlimited IPs to discover network machines—PCs, routers, printers, and so on. The scan function is similar to a ping. However, features include customizable TCP, UDP, and ICMP discovery methods, OS detection, and general machine information.

You can then use discovery results to create host files, or to launch a vulnerability assessment scan directly from the discovery interface.

Accessing the Discover Tab

Complete the following step to access the Discover tab:

Click the Discover tab on the Retina Interface (unless it is already selected).

The following example shows the Discover tab of the Retina Interface.

The Discovery Tasks shortcut bar displays the following commands that you can select. Unavailable menu options appear dimmed.
Using the Discover Tab

- Start Discovery Scan
- Pause Discovery Scan
- Add to Address Group
- Scan Selected IPs
- Clear Discovered Items

The main window of the **Discover** tab is divided into two panes:
- The **Actions** pane, where you set targets, determine options and start or schedule scan jobs.
- The **Results** pane, where the devices found during a discover scan are listed.

Starting a Discovery Scan

Retina’s discovery scan feature is used to determine if a specific IP or range of IPs is active on your network. You can also use scan results to determine if there are additional IPs with Retina licenses on your network that you did not know about. Scan results can provide information about an outside source that is attempting to exploit your network.

Complete the following steps to start a discovery scan:

1. Select the **Discover** tab from the Retina Interface (unless it is already selected). The **Discover** window appears.

2. Click **Targets** from the **Actions** pane (unless it is already selected). The **Select Targets** options appear.

3. You may select a number of target types from the **Target Type** drop-down:
 - **Single IP** – Then enter the IP address or the name of the server that you want Retina to scan in the **Address** field.
 - **IP Range** – Then enter a range of IP addresses for Retina to scans as follows:
 - Enter the start range IP address in the **From** field
 - Enter the end range IP address in the **To** field
 - **CIDR Notation** – Enter the IP address and network prefix in the **Address** fields.

For example, **192.168.205.0 /18** means the first 18 bits are used to represent the network and the remaining 14 bits are used to identify hosts. Common prefixes are 8, 16, 24, and 32 (Class A, B, C, and single host, respectively).

- **Named Host** – Then enter either the DNS or the NetBIOS name of the desired host.
- **Address Groups** – Select one or a number of address groups to be scanned. You may also modify, create or import address groups by clicking the **Modify** button (see **Modifying Address Groups** on page 38).
Using the Discover Tab

- **Advanced** – Enter groups of addresses via wild cards.

Note: If you want to quickly start a discover scan at this point, press the **Enter** key on your keyboard and then go to step 9 of this procedure.

4. Click **Options** on the **Actions** pane. The **Options** choices appear.

5. Select any of the following network options you want Retina to perform. Also, deselect any of the following default network options that you do not want Retina to perform.
 - **ICMP Discovery**
 - **TCP Discovery on Ports**

Enter the port number(s), comma separated, that you want Retina to scan in the provided field.

 - **UPD Discovery**
 - **Perform OS Detection**
 - **Get Reverse DNS**
 - **Get NetBIOS Name**
 - **Get MAC Address**

6. To run the Discovery scan immediately click **Discover**. To run the Discovery scan in the future or on a regular schedule, click **Schedule**. For information on scheduling, see **Scheduling Scan Jobs** on page 49. You can also start the discovery scan by clicking **Start Discovery Scan** on the **Discovery Tasks** shortcut bar or by pressing the **Enter** key.

7. Retina displays your results in the **Results** table as it scans the selected IP(s).

The following is an example of discover scan results.

Select Network Discovery Options To Perform

- **ICMP Discovery**
- **Perform OS Detection**
- **TCP Discovery on Ports**
- **Get Reverse DNS**
- **Get NetBIOS Name**
- **Get MAC Address**
8. Complete the following optional steps when needed:
 - Click Pause Discovery Scan on the Discovery Tasks shortcut bar or the Pause button if you want to pause the scan and the display results.
 - Click the Abort button to prevent Retina from displaying additional information.
 - You can also select Abort Discovery Scan from the Discovery Tasks shortcut bar.

9. Review your scan data as needed.

Creating a New Address Group from Scan Results

IP address groups are sets of addresses that you can create, modify, and audit. The group itself can contain any combination of IP addresses. For example, you can create a group that lists only your organization’s 2000 servers.

Complete the following steps to create an address group.

After completing the discover scan, the list box on the Discover tab will be populated with the devices discovered on the network. The following steps refer to that list box.

1. Click the IP addresses you want to include in your new address group from the scan results listed in the Results table.

2. To select consecutive IP addresses, hold down the Shift key and click the IPs you want to include. To select non-consecutive entries, hold down the Ctrl key and click the IPs you want to include.

2. Click Add to Address Group from the Discovery Tasks shortcut bar.

The Add to Address Group dialog box appears.
Using the Discover Tab

3. Click the **Create a New Address Group** radio button.
4. Enter a name for your new address group in the provided field.
 For example, if you are creating an address group for a group of servers, enter a descriptive name such as XP Servers, as shown in the example below.

5. Click **OK**.
 Retina saves your new address group.

6. When you want to view the list of IP addresses for the new group you created, click the **Audit** tab and click **Modify Address Groups**.

Appending to an Existing Address Group

You can add one or more IP addresses to an existing address group.
For example, if there is a new Windows 2000 server on your network, you can add the corresponding IP address to the Windows 2000 address group. Also, if there is an IP address you forgot to add when you created the address group, you can append it to the group at any time.

Complete the following steps to append to an existing address group:

1. Click the IP address(es) you want to include in the existing address group from the scan results listed in the **Results** table.
2. Click **Add to Address Group** from the **Discovery Tasks** shortcut bar.
 The **Add to Address Group** dialog box appears.
3. Accept the default setting of **Append to Existing Address Group**. Either use the group that appears by default, or click the down arrow and select a different address group.

4. Click **OK**.
Retina saves the changes to the selected address group.

5. If you want to view the list of IP addresses for the group you appended, click the **Audit** tab and click **Modify Address Groups**.

Clearing Discovered Items

Retina provides an option that allows you to quickly clear all of the scan results that appear in the **Results** table. You should always clear your results before you create a new scan.

Complete the following step to clear your scan results:

1. Click **Clear Discovered Items** from the **Discovery Tasks** shortcut bar.

2. Click **Yes** when the **Are you sure you want to clear discovered data?** dialog appears.

Retina clears all of your results and displays a blank pane.

Sorting the Scan Results

Retina allows you to reorganize your scan results by column name. Complete the following step to sort your scan results:

- Click and drag the column header that you want to group your scan results by to the top row of the **Results** table.
For example, if you want to display your scan results by the date and time that the IPs were discovered during the scan, click the Date Discovered column header and drag it to the top row of the Results table as shown in the following example.

Retina sorts and displays your results by the column name you selected. In the example above the table has been sorted by operating system (OS).

If you do not want future discovery scans sorted by the selected column name, drag and drop the column header back to its original place in the table header area.
Using the Audit Tab

The Audit tab is an option you can select to scan for all known open ports and services on the specified target IP address(es). You can then use the scan results to complete a network audit. Based on its findings, the scanner module searches available services or open ports for security vulnerabilities. The scanner module also has a feature that determines if a protocol running on a port uses protocol detection.

The main window of the Audit tab is divided into three panes:

1. The Actions pane, where you set targets, ports and audits; determine options and start or schedule scan jobs.
2. The Scan Jobs pane, where you determine the status of scan jobs; view completed jobs; view scheduled jobs; control active jobs; and delete or view completed jobs. To learn more about the Scan Jobs pane, see Using the Scan Jobs Pane on page 51.
3. The Scanned IPs pane, where the devices and information found during an audit scan are listed.

Accessing the Audit Tab

Complete the following step to access the Audit tab:

1. Click the Audit tab (unless it is already selected) from the Retina interface.

2. The following example shows the Audit tab of the Retina Interface.

The Audit Tasks shortcut bar displays the following commands that you can select. Unavailable menu options appear dimmed.
• **Start Scan** – To begin or queue a new scan
• **Modify Address Groups**
• **Modify Port Groups**
• **Modify Audit Groups**
• **Modify Credentials**

Starting an Audit Scan

Complete the following steps to start an audit scan:

1. Select the **Audit** tab from the Retina Interface (unless it is already selected). The **Audit** window appears.

2. Click **Targets** from the **Actions** pane (unless it is already selected). The **Select Targets** pane appears.

3. You may select a number of target types from the **Target Type** drop-down:
 - **Single IP** – Then enter the IP address or the name of the server that you want Retina to scan in the **Address** field.
 - **IP Range** – Then enter a range of IP addresses for Retina to scans as follows:
 - Enter the start range IP address in the **From** field
 - Enter the end range IP address in the **To** field
 - **CIDR Notation** – Enter the IP address and network prefix in the **Address** fields.
 - **Named Host** – Then enter either the DNS or the NetBIOS name of the desired host.
 - **Address Groups** – Select one or a number of address groups to be scanned. You may also modify, create or import address groups by clicking the **Modify** button (see **Modifying Address Groups** on page 38).
 - **Advanced** – Enter groups of addresses via wild cards.

Note: If you want to quickly start an audit scan at this point, press the **Enter** key on your keyboard and then go to step 10 of this procedure.

4. Enter the name of the file you that want to store this scan in the **Filename** edit box. Use just the filename without path or extension information. Retina now stores multiple scans in a single file, so you may wish to save scans to files based on the type of scan run. For instance: servers, workstations, Sasser or any number of other more descriptive filenames. If you do not enter a filename, Retina will generate one (though it won’t be displayed).
To store the scan in a DSN click the down arrow in the Output Type drop down box and select DSN. You may then select your storage location from the list of configured DSNs. To configure a DSN see Using a DSN to Store Session Data on page 60.

5. Enter the name you will use to identify the job in the Job Name field. If you do not enter a name, Retina will prompt you for one when you click scan (you may disable that popup when you see it). If you continue past the popup without naming the job it will be named “unknown.”

6. If you wish to run a scan with registry access, click the down arrow in the Credential drop down box, and select a pre-defined user to run the scan under. To set up pre-defined users see Credential Management on page 40.

Note: If you want to start an audit scan at this point, click the Scan button. And go to step 10 of this procedure.

7. Click Ports on the Actions pane.
The Select Port Group(s) options appear.

8. Select any of the port group options you want Retina to scan. Deselect any of the following port group options that you do not want Retina to scan. You can select more than one port group, in this manner you can combine several custom groups for a single scan. Among others, we include:
 - All Ports – Scans on all ports
 - Discovery Ports – Scans those ports used in Discover
To modify port groups see Modifying Port Groups on page 37.

Note: If you want to start an audit scan at this point, click the Scan button. And go to step 10 of this procedure.

9. Click the Audits sub-tab the Select Audit Groups pane appears. You may select from the pre-defined audits that, as of this writing, are All, and 3 versions of the SANS 20 audits. Or you may select your own custom audit groups that you have created. To create or modify audit groups see Modifying Audit Groups on page 39.

10. Click the Options sub-tab and do the following as required:
 All options affect the targeted device(s).
 - Perform OS Detection – Determine operating system on the target device.
 - Get Reverse DNS – Determine DNS name
 - Get NetBIOS Name – Determine NetBIOS
 - Get MAC Address – Determine MAC address of target NIC (only for Windows™ devices the local segment.
 - Perform Traceroute – Track number of hops
 - Enable Connect Scan – Force a full TCP connection
Using the Audit Tab

- Enable Force Scan – Force the scanner to audit ports that do not answer
- Randomize Target List – Cause the list of targets to be scanned in a random order. Useful when scanning load-balanced systems.
- Enumerate Registry via NetBIOS – Access the registry
- Enumerate Users via NetBIOS – List users
- Enumerate Shares via NetBIOS – List directory or drive shares
- Enumerate Files via NetBIOS – List file shares
- Enumerate Hotfixes via NetBIOS – List all installed hotfixes.
- Enumerate Named Pipes via NetBIOS – List named pipes
- Enumerate Machine Information via NetBIOS – List system information
- Enumerate Audit Policy via NetBIOS – List administrative policy settings
- Enumerate Per-User Registry Settings via NetBIOS – List user settings
- Enumerate Groups via NetBIOS – List groups in use and their members
- Enumerate Processes via NetBIOS – List running processes and services
- Enumerate User and Group Privileges via NetBIOS

Note: The Connect Scan and Force Scan options can increase the length of time required to complete the scan by a significant amount. Force Scan should not be used across a range. Force Scan should only be selected for specific targets that are known to filter or otherwise ignore TCP, UDP, or ICMP probes. The Retina scanning engine will drop to Connect Scan automatically when required. Connect Scan should only be used to trouble shoot cases where the network connection is known to be unreliable. OS detection cannot be performed with Connect Scan enabled.

Note: Enumeration options affect Windows™ devices only.

11. Click the Scan button to start the job immediately. Or Schedule to set the job to run in the future or on a schedule. For information on scheduling see Scheduling Scan Jobs on page 49.

Audit Results

The results of an audit scan are displayed in the Scanned IPs pane. This pane is divided into three sections. The first section on the left is the IP list, the upper section on the right is the information section, and the lower section on the right is the description section.

Notes On Scanning Ranges: If you enter a range, address group, or CIDR block that exceeds your licensed IP limit, Retina will audit scan the range up to the number of addresses that you have licensed. If there are more responsive targets in the range Retina will provide machine information on these systems so that you know how many there are and what types of machines there are. However, there will not be any audits run against the addresses above your license limit.
Using the Audit Tab

The IPs displayed in the IP list can be sorted by vulnerability or IP. The list contains all of the IP addresses that responded during a scan. Also, Retina displays an image representing the highest risk level of the audits found on the specified system. The image is color coded to match Retina’s audit risk level settings including:

- **Grey** = None
- **Green** = Info
- **Yellow** = Low
- **Orange** = Medium
- **Red** = High

The information section lists information and vulnerabilities found on the device selected in the IP list. The information listed will be listed under collapsible headings such as:

- **General** – information about the device: address, report date, domain name and others
- **Audits** – vulnerabilities or audit information found on the device. Each audit or vulnerability will have an icon matching the above color scheme indicating its relative risk level.
- **Machine** – OS, NetBIOS name, number of open ports, and other information that Retina could determine from its scan
- **Ports** – ports which are open on the device and the service that was found running there
- **Services** – services found running on the device
- **Shares** – network directory and device shares that Retina was able to enumerate on the device
- **Users** – the users that Retina was able to enumerate for the device

The description section will list what further information is available for the item selected in the information section. For audits this will be:

- **Description** – a description of the problem and its possible affects
- **Risk Level** – the risk the vulnerability presents to the device
- **How To Fix** – the instructions for fixing the problem, including links to hot fixes.
- **Related Links** – if available, links to more information on the vulnerability
- **CVE** – if available, links to related CVE entries
- **BugtraqID** – if available, links to related Bugtraq vulnerabilities

Creating and Modifying Groups

Port Groups

Complete the following steps to modify a Port group:

1. If you want to enter individual port numbers or groups of ports you want Retina to scan, click the **Modify** button next to the **Select Port Groups** box on the **Audit** tab on the **Ports** sub-tab. The **Port Groups Modification** dialog box appears.

2. Complete one of the following steps:
 - Click the Port Group down arrow and select the port group you want Retina to scan, or accept the default value, which is All Ports.
 - To modify the list of ports for the selected group, click the provided field under the **Description** column header and enter the port number. Click **New** to enter a new port group.
 - Click Single Port to add a single port to the group, or Port Range to add a range of ports to the group.
• Click Reset to clear changes.
• Close the dialog box to save the group.

Address Groups

Complete the following steps to modify an address group:
1. Select the Audit tab from the Retina Interface (unless it is already selected).
2. Select Modify Address Groups on the shortcut bar. The Address Groups dialog box appears.

3. Click the Address Group down arrow, and select the address group you want to modify.
4. Click New and type the desired name in the Group Name edit field to create a new address group.
 • To add a single host to the address group, select Single IP or Named Host, and then click Add.
 • To add a continuous range of hosts to the group, select IP Range or CIDR Notation, and then click Add.
 • To prevent a host or range of hosts from being scanned check the Omit this entry checkbox before clicking Add.
 • To import Retina 4.x host file (.rti) click Import and select the file in the file selection window.
 ▪ Click Delete to remove an address group.
 ▪ To remove a single address or multiple addresses from the group, select them in the Address list, and click the Delete button at the bottom of the list.
 ▪ To clear changes before saving, click the Reset button.
Audit Groups

Complete the following steps to modify an audit group:

1. Select the Audit tab from the Retina Interface (unless it is already selected).
2. Select Modify Audit Groups on the shortcut bar. The Audit Groups dialog box appears.

3. Click the Audit Group down arrow, and select the audit group you want to modify.
 - Click New to enter a new audit group.
 - Click Delete to remove an audit group.

4. To find a specific audit to perform:
 - Enter text related to the audit in the Look For text box.
 - Decide which type of text field you want to search, and select it in the Search In drop down box.
 - To limit your search to a single category, select it in the Filter drop down box.
 - Click the Find button.
 - To return the screen to all audits and categories, click the Clear button.
 - To select an audit by its CVE, or BugTraq ID (BID) number you can use the number in the Look For text box or select the appropriate tab and scroll down the list to find it.

5. To add an audit to the audit group, check the box next to its Audit Name—to remove it, clear the checkmark.
6. To save the audit group, close the dialog box.
7. To clear changes that you've made prior to saving, click the Reset button.
8. To ensure that an audit group has any updated or new audits automatically selected when Retina is updated, check the **Automatically add new audits to this group** checkbox, to prevent new audits from being added to the group, uncheck it.

Hint: To keep track of what audits are updated or added in a Retina update, create a new audit group called New, unselect all audits in the group and then check the box. The next time Retina updates you can scroll down the list to see what is checked.

Hint: To keep track of what audits are updated or added in a Retina update, create a new audit group called New, unselect all audits in the group and then check the box. The next time Retina updates you can scroll down the list to see what is checked.

Always Groups

For target, port, and audit selections that you want enabled with every scan you can create an **Always** group. Always groups will not display in the group selection box. They will only be listed in the group selection drop-down list. For example to create an always address group to prevent scanning of a group of IPs do the following:

1. From the **Audit** tab select the **Target Type: Address Group(s)** on the **Targets** sub-tab.
2. Click the **Modify** button.
3. You will see the **Address Group Modification** window.
4. If the **Always** group does not exist, click the **New** button and enter **Always** for the group name to create an **Always** group.
5. To omit a single host from all scans, select Single IP or Named Host, enter the information, click the **Omit** check box and then click **Add**.
 - To remove a single address or multiple addresses from the group, select them in the Address list, and click the **Delete** button at the bottom of the list.
 - To clear changes before saving, click the **Reset** button.

Credential Management

Overview

In Retina versions prior to 5.0, Retina ran as a desktop application, in that configuration it ran audits with the permissions of the user logged in (or calling the executable from a script). This meant that if the user was a domain administrator that there would be no problems with access when scanning a remote system on the same domain. In Retina 5.0 the scanner runs as a service. In this mode the default installation runs as the LOCAL_SYSTEM user. This user has no access to Windows Networking connections—such as NetBIOS and remote registries.

It should also be noted that Retina utilizes the operating system’s authentication settings and libraries. This means that a Retina scanner installed on a system that has the Network security setting “LAN Manager authentication level” set to “Send NTLMv2 response only\refuse LM & NTLM” won’t be able to log on to a client that is set to a lower level, such as “Send NTLM response only.”

Deployment/Installation Decisions

eEye recommends that you install Retina in the default manner with the **eEye Retina Engine** service running as the LOCAL_SYSTEM user and manage user credentials via the Retina **Credential Management** interface. However, to meet your network requirements you may choose to install the **eEye Retina Engine** service to “Log On” as a user with Windows access (see “How-To configure how a service is started in the Microsoft Management Console™”). Otherwise Retina will use the credentials last selected via the Retina **Audit->Credential** interface.

Local Access to non-Windows™ devices

To access non-Windows™ devices for scanning, Retina utilizes an SSH connection to conduct its audits. This means that an SSH server must be running on the target device. The user/password combination selected as the credentials for the scan must also exist on the target system and have sufficient access to perform the checks.
If you intend to also utilize other credentials, insure that the account used for Retina’s logon has access to the Windows registry.

Note: While operating Retina in this manner presents no problem for the software, you should include this information when reporting problems to eEye® as it can be important to know when troubleshooting.

If you have multiple segments or systems that require different credentials to access, then you should set up Retina to use a different set of stored credentials for each scan (the default setup). To operate in this manner, see the instructions that follow. Finally, to have a number of administrators with different access credentials use Retina without accessing registry information on other segments or networks, you can have each administrator enter their information using the steps in **Managing Credentials**, run their scan, and then delete their credentials.
Managing Credentials

Using Credentials
To use a set of credentials in a scan:
1. From the Audit tab select the Targets sub-tab.
2. Click the down button in the Credential drop-down box.

3. Then select the desired user from the drop-down list. The user must have access to the registry or domain that will be scanned.
4. Your scan will now run with the access provided by the user you selected.

Adding/Editing Credentials
To set up credentials for use:
1. Select Tools from the menu.
2. Select Credential Management from the drop-down menu.
3. You will see an information dialog informing you that storage of credentials. You will have to decide if you wish to store credentials. If so, select Yes. If not you will not be able to use credentials when scanning.

4. You will then see the Credential Management dialog. Enter the user ID that you wish to use for scanning in the Username edit box, to enter a domain user ID enter the name of the domain, a backslash and the user ID i.e.: Corporate\Administrator, otherwise Retina will use the entered credentials as a local user on the target systems; the corresponding password into both the Password and the Confirm Password edit boxes. And finally enter a name for the pair in the Description field.
5. Then select **Add**. You may enter a number of credentials here, by repeating steps 4 and 5.
6. To remove a stored credential, highlight the desired user name in the **Username** list box.
7. Select the **Delete** button.
8. When you are through managing credentials select the **Close** button.
Using the Remediate Tab

The Remediate tab is used to generate reports or lists to be used in remediation management. The most useful lists are those of all machines with a certain vulnerability to be fixed, or all vulnerabilities for specific machines. This same information can also be opened in MS Word™ or Internet Explorer™ to create customized reports.

The main window of the Remediate tab is divided into three panes:
1. The Configurations pane, where you set filters and options and generate Remediation lists.
2. The Scan Jobs pane, where you determine the status of scan jobs; view completed jobs; view scheduled jobs; control active jobs; and delete or view completed jobs. To learn more about the Scan Jobs pane, see Using the Scan Jobs Pane on page 51.
3. The Results pane, where the generated reports are displayed.

Accessing the Remediate Tab

Complete the following step to access the Remediate tab:

Click the Remediate tab from the Retina interface (unless it is already selected).

The Remediate Tasks shortcut bar displays the following commands that you can select. Unavailable menu options appear dimmed.

- Generate Report
- Save Report
- Print Report
Generating a Remediation Report

1. Select the Remediate tab from the Retina Interface (unless it is already selected).
2. Select the Filter tab on the Configuration section of the main window.

3. Select the report grouping, machine, and vulnerability sorting options by using the Group Report By, Sort Machines By, and Sort Vulnerabilities By drop down boxes.
4. There will be a list of found vulnerabilities or scanned machines in the Include In Report window. Check or uncheck these to include or exclude them from the report.
5. To change formatting for the report, click the Options tab and check or uncheck to select or deselect formatting options. You can select from the following options:
 - **Insert page breaks between entries** – Which will insert page breaks between the vulnerabilities or the IPs depending on which selection you made in grouping the report.
 - **Include confidentiality page** – Which will include the Confidential heading a paragraph at the beginning of the report.
 - **Include creation details page** – Includes information entered in the Report Created By and Report Created For text boxes.
 - **Expand URLs for printing** – Displays the actual URL rather than the highlighted link.
 - **Include notes area after each section** – Includes a notes area after each section.

6. Click the Generate button to produce the report. This could take several minutes, depending on the size of the scan and the number of vulnerabilities found.
Printing a Remediation Report

To print a report, click either the Print Report button from the shortcut bar or the printer icon on the toolbar and follow the prompts.

Editing a Remediation Report in Microsoft Word™

If you have Microsoft Word™ installed, you can click Open Report In Microsoft Word™ on the shortcut bar, and the report will open in a Microsoft Word™ window ready for editing.

Saving a Remediation Report

You can save a Remediation Report in HTML format for future use. To save a Remediation Report, in the top line menu, go to File->Save Report As... and follow the prompts for saving your report.
Using the Report Tab

Retina reports provide detailed information gathered by the scanner and organized into sections, including General, Audits, Machine, Ports, Services, Shares, and Users. The report, in its printable form, can be viewed by pressing the Reports button on the toolbar. The Reports interface allows you to quickly and efficiently customize the output of Retina reports to better suit your needs.

The main window of the Report tab is divided into three panes:
1. The Configurations pane, where you set filters and options and generate reports.
2. The Scan Jobs pane, where you determine the status of scan jobs; view completed jobs; view scheduled jobs; control active jobs; and delete or view completed jobs. To learn more about the Scan Jobs pane, see Using the Scan Jobs Pane on page 51.
3. The Results pane, where the generated reports are displayed.

Accessing the Report Tab

Complete the following step to access the Report tab:

Click the Report tab on the Retina interface (unless it is already selected).

The following example shows the Report tab of the Retina Interface.

The Report Tasks shortcut bar displays the following commands that you can select. Unavailable menu options appear dimmed.

- Generate Report
- Save Report
• Print Report
• View in Microsoft Word™
• View in Web Browser

Generating a Report

1. Select the Report tab from the Retina Interface (unless it is already selected).
2. To select what sections to include in the report click on the Sections tab of the Configuration pane and check the sections you want in the report.

 ![Configuration](image)

3. To change formatting for the report, click the Options tab and check or uncheck to select or deselect formatting options.

 ![Configuration](image)

4. Click the Generate button to produce the report. This could take several minutes depending on the size of the scan and the number of vulnerabilities found.
Printing a Report

To print a report, click either Print Report on the shortcut bar or the printer icon in the toolbar, and follow the prompts.

Saving a Report

You can save a Report in HTML format for future use. To save a Report, in the top line menu, go to File->Save Report As... and follow the prompts for saving your report.
Scheduling Scan Jobs

The Scheduler works the same for Discover scans and Audit scans. The only exception is that there can be only one Discover scan scheduled (named Discover) at any time. To get to the Scheduler click the Schedule button in either the Discover or the Audit tab.

To run the scan once:
A. Enter the name that you would like for this scan.
B. Select Once in the Frequency drop-down.
C. Select the Start Time.
D. Select the Run Date (up to one year in the future).
E. Select OK.

To run the scan on a daily basis:
A. Select Daily in the Frequency drop-down.
B. Select the Start Time.
C. Select OK.

To run the scan on a weekly basis:
A. Select Weekly in the Frequency drop-down.
B. Select the Start Time.
C. Select one or more Day(s) of the Week to run the scan.
D. Select OK.

To run the scan on a monthly basis:
A. Select Monthly in the Frequency drop-down.
B. Select the Start Time.
C. Select the Day of the Month to run the scan
D. Select one or more Month(s) of the Year to run the scan.
E. Select OK.
Using the Scan Jobs Pane

The Scan Jobs pane is available in the Audit, Remediate and Discover tabs. It consists of three sub-tabs:

Active
The Active tab lists jobs and their status. Jobs started from the Retina interface, the Retina command line utility or sent from a REM Events server will display here.

<table>
<thead>
<tr>
<th>Job Name</th>
<th>Status</th>
<th>Start Time</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS20</td>
<td>Running</td>
<td>04:06:02 21:34:00</td>
<td>D:\Program Files\Eye Digital Security\Retina...</td>
</tr>
</tbody>
</table>

Then Job Name column will be the name you assigned to the job, or “unknown” if you did not assign a name.

The Status column can be Running or Requested. A running job is currently being scanned. A requested job is a job that is in the queue to be run and will start as soon as there are threads available.

The Start Time column is the time the job was Requested until the job starts. Once started it will be the time that the job actually began scanning.

The Data Source is the filename or DSN that the job is being written to.

Each column can be sorted.

A job in the Active pane may be paused or aborted no matter how the job was started. To pause a job, select it in the window and click the Pause button. To abort a job, select it in the window and click the Abort button.

Completed
The Completed tab lists jobs that have finished.

<table>
<thead>
<tr>
<th>Job Name</th>
<th>Status</th>
<th>Start Time</th>
<th>End Time</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>FullScan</td>
<td>Completed</td>
<td>04:06:02 20:36:05</td>
<td>04:06:02 21:36:56</td>
<td>D:\Program Files\Eye Digital Security\Retina...</td>
</tr>
<tr>
<td>SANS20</td>
<td>Completed</td>
<td>04:06:02 20:36:05</td>
<td>04:06:02 21:36:56</td>
<td>D:\Program Files\Eye Digital Security\Retina...</td>
</tr>
<tr>
<td>SANS20</td>
<td>Completed</td>
<td>04:06:02 21:34:00</td>
<td>04:06:02 21:36:00</td>
<td>D:\Program Files\Eye Digital Security\Retina...</td>
</tr>
<tr>
<td>SANS20</td>
<td>Completed</td>
<td>04:06:02 21:34:00</td>
<td>04:06:02 21:44:00</td>
<td>D:\Program Files\Eye Digital Security\Retina...</td>
</tr>
</tbody>
</table>

The Job Name, Start Time and Data Source columns are the same as the Active tab.

The Status is either Completed for a job that ran to its normal completion, or Aborted, for a job that a user aborted.

The End Time is the time that the job ended or was aborted.

Selecting the job and clicking the Delete button will delete jobs in the Completed tab. The job will be deleted from the location it is stored, the file or DSN won’t be deleted.
Using the Scan Jobs Pane

The user can also **Rescan** a job in the **Completed** tab by selecting the job in the list and clicking the **Rescan** button. The listed job will not be overwritten, but a new job with the same settings will be started.

Scheduled
The **Scheduled** tab displays jobs that are scheduled but not yet executed. Once a job starts it will be placed in the **Active** tab and the next scheduled instance of the job will then show in the **Scheduled** tab.

<table>
<thead>
<tr>
<th>Job Name</th>
<th>Status</th>
<th>Data Source</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS20</td>
<td>Scheduled</td>
<td>D:\Program Files\Eye Digital Security\Retina 5\Scan\Servers.txt</td>
<td>04/07/01 21:54:00</td>
</tr>
</tbody>
</table>

The **Job Name**, **Data Source** and **Start Time** are the same as the other tabs.

The **Status** is only scheduled.

Jobs in the **Scheduled** tab can be edited and deleted. Selecting a job in the list and clicking on **Edit** will bring up the **Scan Job Scheduler** (see **Scheduling Scan Jobs** on page 49 for information) window.

Selecting a job in the list and clicking **Delete** will remove the job from the schedule.
Completing Scan File Procedures

Retina automatically saves scans under either a generated name or using the name you entered when you started the audit scan (see Starting an Audit Scan on page 33). This section describes how to open, and delete scan files.

Opening a Scan File

Complete the following steps to open a scan file:

1. Select File > Open from the menu bar.
2. Select the scan file you want to open.
3. The scans available in that file be displayed in the Job Status->Complete window.

Deleting a Scan File

Complete the following steps to delete a scan file:

1. Select File > Open from the menu bar.
2. Select the scan file you want to delete.
3. Press the Delete key on the keyboard.
 Windows™ prompts you to confirm that you want to delete the selected file.
4. Choose Yes to delete the file. Otherwise, choose No.
 Windows™ deletes the scan file from the list of files.
Options

Customizing Retina

You can customize Retina to meet your specific needs by using the **Options** Dialog, located by selecting **Tools > Options**.

General Options

You will see the **Options** dialog open to the **General** tab. This tab controls:

- Appearance
- Logging
- Auto Update
- Central Policy
Options

Appearance

You can select Minimize Retina to the system tray, which will cause Retina to drop to an icon in the system tray when minimized:

Logging

The Generate a log file of Retina operations selection turns Retina logging on if checked, and off if unchecked. By default, Retina logs to a file named YYYY-MM-DD__NNNNN__RetDebug.log in the installation directory.
Auto Update

The **Automatically check for updates when Retina Starts** check box turns policy and software updates on and off. The **Prompt** selection determines how long Retina will wait prior to starting the update.

Central Policy

The **Enable Central Policy** checkbox allows Retina to download audit files from a single REM server. The location of the REM server must be entered in the **Central Policy URI** text box. **Check for new policies every...** determines how often Retina will request updates from the REM server.

Event Routing

The **Event Routing** tab controls:

- REM Event Logging
- OPSEC Logging

REM

Enable logging to a REM Event server and determine what information to log.

OPSEC

Enable logging of specified audits to a syslog server and set the server address and port.

Scanner

The **Scanner** tab adjusts the performance of the scanner. The default settings should be acceptable for most systems. You should only adjust them if you are having problems.
Performance

Performance problems will normally show up in other problems on the either the physical scanner system as such problems as an unresponsive mouse or screen refreshes and HTTP or other network protocol timeouts. They typically show up on target machines as dropped connections for other services. Though it can show up in the Retina logs in such areas as known services not being found or known open ports not being identified.

If you find that Retina is overloading the server it is installed on—the server loses other connections or is unresponsive during scanning—try reducing the number of simultaneous targets.

If you find that Retina is overloading your network or the target hosts, reduce the Adaptive Scan Speed.
Reliability

Reliability problems can be caused by poor network connectivity or overloaded target systems. These problems are not normally noted on the actual scanner server, except through longer scan times. They typically show up on target machines as dropped connections for other services. Though it can show up in the Retina logs in such areas as known services not being found or known open ports not being identified. If a single service is slow on the target machine, this will show in the Retina logs as services that are initially connected, but with the banners and other return information not displaying until some time after the check is complete.

These settings are used to allow Retina to compensate for network latency. If you find that pings are not returning in time for Retina to detect them, adjust the **Ping Timeout** upward. If Retina doesn’t seem to be getting complete data from devices, or you are scanning hosts with services that are under heavy load, adjust the **Data Timeout** upward.

Again, the default settings should be suitable, only adjust these when you’ve checked other possible problems with the network.
Retina Extras

Using a DSN to Store Session Data

Complete the following steps to use a system DSN (Data Source Name) to store your Retina scan results.

- Select any of the existing system DSNs.

Creating a DSN to Store Session Data

See the Windows™ Help menu for instructions on using the User DSN Wizard to create a system DSN for your Retina scan results. The target database must be configured to support Retina tables.

Viewing Previous Jobs from a DSN

Once you have assigned a DSN to Retina, you can then use it to store scan data. By default, Retina always displays the most recent scan results when a DSN is selected.

Complete the following steps to view results of previous scans stored in your DSN.

1. The Select Job box appears.
2. Choose the scan file that you want to view, and click OK.

Retina displays the available scans in the Scan Jobs section of the Audit, Remediate, and Report tabs.

3. In the Completed sub-tab of the Scan Jobs section, select the job you wish to view, report or remediate and the results will be available in the Scanned IPs section of the Audit tab or will be used for the Remediate or Report when you click the Generate button.
Auto Update

What is Auto Update

Using an Internet connection, Auto Update allows you to easily keep up with the latest Retina improvements available from eEye Digital Security. Once you have selected the Auto Update feature, Retina will update itself with the necessary files—you do not have to deal with any messy file downloads that must be manually installed.

Auto-Update can be configured to run at the beginning of every Retina session. During this period, Auto-Update will contact the eEye update server, and obtain the latest audits and software updates for eEye Digital Security’s Retina scanner.
Manual Update

In addition to configuring Retina to automatically download the latest Retina improvements available from eEye Digital Security, manual updates are also available from the file menu.

1. Select **Tools > Updates** from the menu bar.

Retina will be unloaded as suggested by the initial dialog box.

If you would rather not be questioned about this activity each time, put a checkmark in the box next to *Do not confirm this action again in the future*.

2. Select **Yes**.

The list of Sync-It supported products will be presented. If there is not already a checkmark by Retina, select it from the list.
3. Select Next >.

The Downloading window displays progress bars relating to the download and install of the updates.
4. Select Next >.

The **Update Summary** window appears, allowing you to review the status of the updates performed. Highlighting a product from the list allows you to see the details of the update.
License Management

Running Retina for the First Time

When you run Retina for the first time, you will see the registration screen, which prompts you for a serial number. To obtain the serial number, you will first need to go to the licensing generation part of Retina’s Web site. After purchasing Retina you should have received an email containing a username and password to use to gain access to the licensing generation part of Retina’s Web site.

Full directions to obtain your serial number are included in the post purchase email that you receive after purchasing Retina. Once you have entered a valid serial number you can begin using Retina.

Migrating Retina to a New Machine

To transfer your Retina serial number to a new machine, take the following steps:

1. Launch the License Management interface by selecting License Management from the Help drop down menu.
2. Select the Transfer License radio button and follow the on screen instructions.
Terminating a License

To terminate your Retina license, follow the steps in Uninstalling Retina (page 10) and when prompted delete the Retina license select Yes.
Retina Audit Wizard

The Retina Audit Wizard creates custom Retina audits. These custom audits are added to Audits.XML, a file that contains information that Retina uses to search a computer for particular security vulnerabilities. To use the Retina Audit Wizard to create a custom audit, follow the following steps.

1. Start the Retina Audit Wizard, by either selecting the Audits Wizard... from the Tools drop-down menu or by starting the Audits Wizard.exe in the Retina 5\Tools directory.

You should see the Welcome screen. Click Next> to start creating the audit.

2. You should now see the Audit Description screen. This is where you will set the name, category, and other information for your audit. Click the Next > button to continue building the audit.
The information you can set here is:

- **Audit Name** – The name to give to the audit report on the Retina Interface when the audit has successfully identified a vulnerability.
- **Category** – The category under which the audited vulnerability can be classified. The following categories are available in Retina:
 - **Accounts** – Audits that check for existing accounts or account information. Account audits also include default passwords checks, and unprotected accounts, such as accounts without passwords, expired accounts, and so on.
 - **CGI Scripts** – Audits that check for the existence of CGI scripts that are known to contain security vulnerabilities, such as the notorious /cgi/phf cgi script.
 - **DNS Services** – Vulnerability checks or audits that pertain to the Domain Name Service protocol comprise this category. For example, the Bind TSIG remote root buffer overflow that was released in the later half of the year 2000 would fall under this category.
 - **DoS** – Denial of Service attacks, such as the ICMP fragmentation attack, Ping of Death, and other attacks that can take a machine or service offline and lead to the denial of service to customers fall under this category.
 - **Database**
 - **FTP Servers** – Audits pertaining to the File Transfer Protocol, usually servers, fall under this category.
 - **IP Services** – Vulnerabilities in simple IP services fall under this category—services such as CHARGEN, or ECHO.
 - **Mail Servers** – Audits that examine SMTP, IMAP, POP2, POP3 and other Internet mail servers for security vulnerabilities fall under this section.
 - **Miscellaneous** – Audits that don’t fall under any other category fall here. You could also put custom Audits/RTHs here.
 - **NetBIOS** – Audit’s that use or examine the NETBIOS protocol for vulnerabilities fall under this section. An audit that examined remote Windows™ File Sharing for permissions problems would fall under this section.
Registry – This category is for checks that just check Registry for the existence of a value that can be used to identify a vulnerability.

Remote Access – The remote access category contains audits for security holes in remote access agents. An example of a remote access audit might include an audit that checked for a vulnerability in PCAnywhere.

RPC Services – Audits in this category examine Remote Procedure Call (RPC) services for vulnerabilities. For example, an audit that looked for the existence of a vulnerable rpc.statd server running on a remote host would fall under this section.

Service Control – Audits that examine administrative control panel services fall under this category.

SNMP Servers

SSH Servers – This section contains vulnerability checks for Secure Shell server vulnerabilities.

Web Servers – The audits in this section pertain to the identification of security holes in WWW servers.

Wireless

Anti-Virus

Windows

Backdoors

User

Peer-To-Peer

Spyware

Vulnerability Risk Level

In the upper left hand corner of the Vulnerability sub menu, you can set the severity level of the vulnerability audit being created. The following severities are available:

Information – A security vulnerability that gives the attacker more information, which then helps him to target his attacks more successfully. These can be directory structures, account names, network addresses, or the internal descriptions and information of other machines.

Low – Low-risk vulnerability usually include vulnerabilities that can be exploited to read files containing public information, or a vulnerability that gives an attacker very minimal access to a remote system.

Medium – Medium Level usually includes vulnerabilities that can be exploited to gain general access to a system. Vulnerabilities that allow attackers to remotely view sensitive files can be categorized here also.

High – Full remote access. A vulnerability that can be exploited to gain total access of a machine remotely falls under this category. These vulnerabilities are extremely severe, and tools to exploit them are usually publicly available

Vulnerability Description

Briefly describe the vulnerability in question—what it is, and where it exists.

Vulnerability Fix
Provide information describing how to eliminate the security hole from the system being scanned. This information can describe where to get a patch or how to change a configuration setting.

3. Next you should see the **Audit Type** screen. After you have selected the type click **Next** to continue creating the audit.

![Audit Type Screen](image)

Audit Type
This Section of the Audit Wizard Interface contains the information pertaining to the actual vulnerability check. You set the check type you want make.

The following check types are currently available:

- **Banner** – This check type allows you to compare the scanned machine software version to one that you believe to be vulnerable.

- **CGI Script** – This check allows you to check for the existence of a CGI script that you know to be vulnerable.

- **Registry** – This check type pertains to checks that examine a registry key or key value to determine if a vulnerable software product is installed, or if a vulnerable setting is effective on the computer being scanned.

- **Service Pack/Hotfix** – This check allows you to create audits that determine if hotfixes have been installed. You can also use the audit Wizard to create an audit check for a Hotfix depending on Service Pack conditions. For example, you can create an audit check for Hotfix id q1234 only if Service Pack 1 is not installed.

- **Check File** – Checks the version information for the named file.
- **Remote Check** – This check allows you to check packages on UNIX® or Linux systems.
4. The next screen is the **Audit Details** screen and is different for each type of audit selected. Each screen is detailed below. After you have set the audit details, click the **Next]** button to continue audit creation.

Banner
Select the type of service being checked, HTTP, POP3, SMTP, FTP, DNS, IMAP, LDAP, SSH, or TELNET. Then enter the banner to be checked. Such as:

```
220 corp.ftp.com MyServer 5.0.4
```

Then check the selection box to determine which operating systems the scanner should check for this vulnerability.

CGI Script
Enter the URL of the CGI script you want to check and select the associated operating systems.
Registry
Select Path, Key, or Value for the type of registry entry you will be checking.

Then select does not exist or exists to test for the absence or presence of this registry item. Select the parent Hive to be searched, HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, HKEY_USERS, or HKEY_CURRENT_CONFIG.

Enter the Registry Path to be compared. Also enter the Registry Key and Registry Value if required.

Finally, select the Affected Operating Systems.
Service Pack/Hotfix

If you are creating an audit to check only for Internet Information Server patches then check the **Perform this audit only if IIS is installed** checkbox.

To check for a service pack level, select the **Check to make sure service pack** radio button and then fill in the service pack number in the corresponding edit box.

To check for a Hotfix, select the **Check to make sure hotfix** radio button and enter the hotfix number in the corresponding edit box.

To check for a hot fix in lieu of a service pack, select the **If installed service pack is less than** radio button and enter the service pack number and hot fix number in the corresponding edit boxes.

Then select the **Affected Operating Systems**.
To check a file version, enter the full pathname of the file in the **Check if the File Version of** edit box; then select **equal to, greater than, less than, greater than or equal to, or less than or equal to** in the drop-down selection box; and enter the version number in the edit boxes to the left of **Version**.

Then select the **Affected Operating Systems**.
Remote Check
Remote checks are used to check for packages on non-Windows® devices.

To check for a package installed on a system, enter the regular expression that will match the desired package (packages) in the Package edit box and check the Alert when matched checkbox.

To check to see if a package is not installed, enter the regular expression that will match the desired package in the Package edit box and un-check the Alert when matched checkbox.

To check for a package installed on a system only if a second package is installed, enter the regular expression that will match the desired package (packages) in the Package edit box; check the Alert when matched checkbox; check the Only if installed package matches checkbox; enter the regular expression that will match the desired package in the Installed Package edit box; and check the second Alert when matched checkbox.

To check for a package installed on a system only if a second package is not installed, enter the regular expression that will match the desired package (packages) in the Package edit box; check the Alert when matched checkbox; check the Only if installed package matches checkbox; enter the regular expression that will match the desired package in the Installed Package edit box; and un-check the second Alert when matched checkbox.

To check to see if a package is not installed on a system only if a second package is installed, enter the regular expression that will match the desired package (packages) in the Package edit box; un-check the Alert when matched checkbox; check the Only if installed package matches checkbox; enter the regular expression that will match the desired package in the Installed Package edit box; and check the second Alert when matched checkbox.

To check to see if a package is not installed on a system only if a second package is not installed, enter the regular expression that will match the desired package (packages) in the Package edit box; un-check the Alert when matched checkbox; check the Only if installed package matches checkbox; enter the regular expression that will match the desired package in the Installed Package edit box; and un-check the second Alert when matched checkbox.
The Affected Operating System, Operating System drop-down box is currently only Custom. Enter the regular expression to match the desired OS in the Version String edit box.

5. The Vulnerability Details screen comes up next. If you have BugTraq® or CVE numbers for the audit enter them in the Bugtraq ID or CVE-ID edit boxes.

Enter URLs that link to information about the audit you are creating in the URL and URL Description edit boxes. You may enter up to three.

Click the Next> button to continue creating your audit.
6. The final screen will display.

Completing the Retina Audit Wizard

You specified the following audit settings:

- Name: Example Audit
- Category: Miscellaneous
- Risk Level: Information
- Type: Remote Check

NOTE: To enable this audit in a Retina policy, select "Policies" from the Retina "Tools" menu, switch to the "Audits" page and check the appropriate audit.

To complete this wizard and create the audit, click Finish.
At this point you can click **Finish** to save the audit in the audits.XML file or click **Cancel** to abort audit creation.
Using the Plugins Wizard

You use the Retina Plugins Wizard to load and unload modules written using the Retina API. For information on the Retina API see the Retina API documentation in your C:\Program Files\Retina\Help\API directory.

New - Opens up a file explorer so you can locate the module you want to load.

- *Edit* - Allows you to alter various properties of the loaded module.
- *Remove* – Unloads the selected module from Retina
Using Retina From the Command Line

In Retina 5 there are now two command line interfaces. Retina.exe can still be used from the command line with the noted changes; and the Retina RPC client can be implemented as listed.

Notes:
In this document $RETINA is assumed to be the Retina 5 install directory.

Retina.exe:

Retina.exe Command Line Switches:

? Displays Retina usage information.

Iprange
An nmap style IP range

Addressgroup
The name of an address group file to be used in the scan, this value overrides that of "iprange"

Scantemplate
The name of the scan template file to be used for the scan.

Outputfile
The name of output RTD file to generate, use "*" to have Retina auto-assign a name based on the current timestamp.

DSN
The name of the DSN to be used for data storage, this value overrides that of "outputfile".

Noupdate
Suppresses the launch of Sync-It.exe

Quietmode
Suppresses all dialog boxes.

Minimize
Launches Retina minimized to the system tray.

Policy
The same as "scantemplate"; Used for backwards compatibility with Retina 4.

Status
Name for the Retina scan status file.

NO LONGER SUPPORTED IN RETINA 5:

report hostoutputfile activityid

RetRPC_Client.exe

Retrpc_client returns no debug other information to the command line. All errors etc are sent to the Retina logs.

Usage: retrpc_client <command> <args>

StartScan <scan name>
StopScan <scan name>
PauseScan <scan name>
UnPauseScan <scan name>
SetWindowHandle <Window ID>
StopSchedule <scan name>

Config
ModifySchedule <scan name>
DelCredentials <user name>
SetCredentials <description> <user name> <password>
FixIt <audit id> <host ip> <credential name>
pipeclient

StartScan <scan name>
This starts <scan name>, where <scan name> is the name of a scan request file in $RETINA\Jobs\ScanRequests. Scan requests have xml extensions. If <scan name> is already scheduled no action is taken. If <scan name> is an immediate job, it will be queued.

StopScan <scan name>
This stops <scan name> where <scan name> is the name of a scan request file in $RETINA\Jobs\ScanRequests. Scan requests have xml extensions. If <scan name> is not running, no action is performed.

PauseScan <scan name>
This pauses <scan name> where <scan name> is the name of a scan request file in $RETINA\Jobs\ScanRequests. Scan requests have xml extensions. If <scan name> is not running, or paused, no action is performed.

UnPauseScan <scan name>
This continues <scan name> where <scan name> is the name of a scan request file in $RETINA\Jobs\ScanRequests. Scan requests have xml extensions. If <scan name> is not running, or not paused, no action is performed.

SetWindowHandle <Window ID>
This sets a window handle ID. This is deprecated use PipeClient

StopSchedule <scan name>
This deletes <scan name> where <scan name> is the name of a scan request file in $RETINA\Jobs\ScanRequests. Scan requests have xml extensions. This deletes all occurrences of <scan name> since removes the scanrequest.

Config
This reinitializes many of the retina configuration values from $RETINA\retinacfg.xml

ModifySchedule <scan name>
This forces a change in the time of a scheduled job <scan name> where <scan name> is the name of a scan request file in $RETINA\Jobs\ScanRequests. Scan requests have xml extensions.

DelCredentials <user name>
This deletes the credentials for <user name>

SetCredentials <description> <user name> <password>
This creates a credential <user name> with password <password>, if <user name> exists it will be overwritten.

FixIt <audit id> <host ip> [credential name]
This performs a Fixit operation identified by <audit id> against host <host ip>. It can optionally use <credential name> to authenticate

Pipeclient
This acts as a simple pipe client; seeing all the xml output that the interface would see.
Glossary

A

Acceptable Use Policy: Many networks have policies in place that restrict how a network can be used.

Access Control List: Most network security systems operate by allowing selective use of services. An Access Control List is the usual means by which access to, and denial of, services is controlled. It is simply a list of the services available, each with a list of the hosts permitted to use the service.

Address: There are three types of addresses in common use within the Internet. They are email addresses, Internet (IP) or Internet addresses, and network interface card (NIC) hardware or MAC addresses.

Address Mask: A bit mask used to identify which bits in an IP address correspond to the network and subnet portions of the address. This mask is often referred to as the subnet mask because the network portion of the address can be determined by the encoding inherent in an IP address.

Address Resolution: Conversion of an Internet address into the corresponding Domain Name.

Administrative Domain: A collection of hosts and routers, and the interconnecting network(s), managed by a single administrative authority.

Agent: In the client-server model, the part of the system that performs information preparation and exchange on behalf of a client or server application.

Alias: A name, usually short and easy to remember, that is translated into another name, usually long and difficult to remember.

Anonymous FTP: Anonymous FTP allows a user to retrieve documents, files, programs, and other archived data from anywhere on the Internet without having to establish a user ID and password. By using the special user ID of “anonymous” the network user can bypass local security checks and will have access to publicly accessible files on the remote system.

ANSI: American National Standards Institute. This organization is responsible for approving U.S. standards in many areas, including computers and communications. Standards approved by this organization are often called ANSI standards (e.g., ANSI C is the version of the C programming language approved by ANSI). ANSI is a member of ISO (International Organization for Standardization).

AppleTalk: A networking protocol developed by Apple Computer for communication between Apple Computer products and other computers. This protocol is independent of the network layer on which it is run. Current implementations exist for LocalTalk, a 235Kb/s local area network, and EtherTalk, a 10Mb/s local area network.

Application Program Interface (API): A set of calling conventions that define how a service is invoked through a software package.

Application: A program that performs a function directly for a user. FTP, mail and Telnet clients are examples of network applications.

Application Layer: The top layer of the network protocol stack. The application layer is concerned with the semantics of work (e.g., formatting electronic mail messages). The issues of how to represent that data and how to reach the foreign node are concerns for lower layers of the network.
ARP: Address Resolution Protocol. Used to dynamically discover the low-level physical network hardware address that corresponds to the high level IP address for a given host. ARP is limited to physical network systems that support broadcast packets that can be heard by all hosts on the network. It is defined in RFC 826.

ARPANET: Advanced Research Projects Agency Network—a pioneering long haul network funded by ARPA (now DARPA). It served as the basis for early networking research, as well as a central backbone during the development of the Internet. The ARPANET consisted of individual packet switching computers interconnected by leased lines.

ASCII: American Standard Code for Information Interchange. It is a standard character-to-number encoding widely used in the computer industry.

ATM: Asynchronous Transfer Mode. It is a method for the dynamic allocation of bandwidth using a fixed-size packet (called a cell). ATM is also known as “fast packet.”

Authentication: The verification of the identity of a person or process.

B

Backbone: The primary connectivity mechanism of a hierarchical distributed system. All systems that have connectivity to an intermediate system on the backbone are assured of connectivity to each other. This does not prevent systems from setting up private arrangements with each other to bypass the backbone for reasons of cost, performance, or security.

Bandwidth: Technically, the difference, in Hertz (Hz), between the highest and lowest frequencies of a transmission channel. However, as typically used, the amount of data that can be sent through a given communications circuit.

BIND: Berkeley Internet Name Domain. The implementation of a DNS server developed and distributed by the University of California at Berkeley. BIND provides an automatic means of hostname to IP address resolution.

BOOTP: The Bootstrap Protocol, described in RFCs 951 and 1084, is used for booting diskless nodes. See also: RARP.

Bridge: A device that connects two or more physical networks, and forwards packets between them. Bridges can usually be made to filter packets—that is, to forward only certain traffic.

Devices related to bridges include repeaters, which simply forward electrical signals from one cable to another, and full-fledged routers, which make routing decisions based on several criteria.

Broadband: A transmission medium capable of supporting a wide range of frequencies. It can carry multiple signals by dividing the total capacity of the medium into multiple, independent bandwidth channels, where each channel operates only on a specific range of frequencies.

Broadcast: A special type of multicast packet, which all nodes on the network are always willing to receive.

Broadcast Storm: An incorrect packet broadcast onto a network that causes multiple hosts to respond all at once—typically with equally incorrect packets, which causes the storm to grow exponentially in severity.

Brouter: A device that bridges some packets (i.e., forwards based on data link layer information) and routes other packets (i.e., forwards based on network layer information). The bridge/route decision is based on configuration information.

C

CERT: See Computer Emergency Response Team.
Checksum: A computed value that is dependent upon the contents of a packet. This value is sent along with the packet when it is transmitted. The receiving system computes a new checksum based upon the received data, and compares this value with the one sent with the packet. If the two values are the same, the receiver has a high degree of confidence that the data was received correctly.

Circuit Switching: A communications paradigm in which a dedicated communication path is established between two hosts, and on which all packets travel. The telephone system is an example of a circuit switched network. See also: Connection-Oriented, Connectionless, and Packet Switching.

Client: A computer system or process that requests a service of another computer system or process. A workstation requesting the contents of a file from a file server is a client of the file server. See also: Client-Server Model and Server.

Client-Server Model: A common way to describe the paradigm of many network protocols. Examples include the name-server/name-resolver relationship in DNS, and the file-server/file-client relationship in NFS. See also: Client and Server.

Congestion: Congestion occurs when the offered load exceeds the capacity (or bandwidth) of a data communication path.

Connection-Oriented: The data communication method in which communication proceeds through three well-defined phases: connection establishment, data transfer, and connection release. TCP is a connection-oriented protocol.

Connectionless: The data communication method in which communication occurs between hosts with no previous initialization. Packets between two hosts can take different routes, since each is independent of the other. UDP is a connectionless protocol.

Research Networks (RARE), the CCIRN provides a forum for cooperative planning amongst the principal North American and European research networking bodies.

Cracker: A cracker is an individual who attempts to access computer systems without authorization. These individuals are often malicious, as opposed to hackers, and have many means at their disposal for breaking into a system.

Cyberspace: A term coined by William Gibson in his fantasy novel Necromancer to describe the "world" of computers, and the society that gathers around them.
D

Daisy Chain: A local networking topology in which a single cable runs to multiple workstations. This tends to be less expensive than the alternative "star" topology, but it is also less robust. A break anywhere along the "chain" disables the entire chain. Daisy chains are most often used in PhoneNet or thinnet cabling.

DARPA: Defense Advanced Research Projects Agency. This is an agency of the U.S. Department of Defense responsible for the development of new technology for use by the military. DARPA (formerly known as ARPA) was responsible for funding much of the development of the Internet we know today, including the Berkeley version of Unix and TCP/IP.

Data Encryption Standard (DES): DES is a popular standard encryption scheme. Developed by IBM in the 1970's, DES uses a 56-bit encryption key and was originally designed to run in hardware.

Datagram: A self-contained, independent entity of data carrying sufficient information to be routed from the source to the destination computer without reliance on earlier exchanges between this source and destination computer and the transporting network.

Default Route: A routing table entry that is used to direct packets addressed to networks not explicitly listed in the routing table.

DES: See: Data Encryption Standard

Dialup: A temporary, as opposed to dedicated, connection between machines established over a standard phone line.

Distributed Database: A collection of several different data repositories that looks like a single database to the user. A prime example in the Internet is the Domain Name System.

DNS: See Domain Name System

Domain Name System (DNS): The DNS is a general purpose distributed, replicated, data query service. The principal use is the lookup of host IP addresses based on host names. The style of host names now used in the Internet is called "domain name" because they are the style of names used to look up anything in the DNS. Some important domains are:

- COM (commercial)
- EDU (educational)
- NET (network operations)
- GOV (U.S. government)
- MIL (U.S. military)

Most countries also have a domain such as, .US (United States), .UK (United Kingdom), .AU (Australia), and so on. It is defined in std 13, RFCs 1034 and 1035. See also: Fully Qualified Domain Name.

Domain: A part of a naming hierarchy in the Internet. Syntactically, an Internet domain name consists of a sequence of names (labels) separated by periods (dots).

DoS (Denial of Service): A DoS attack is a remote attack against a server’s TCP/IP stack or services. DoS attacks can saturate a server’s bandwidth, saturate all available connections for a particular service, or even crash a server.

Dot Address (dotted decimal notation): Dot address refers to the common notation for IP addresses of the form A.B.C.D, where each letter represents, in decimal, one byte of a four-byte IP address.

E
Electronic Frontier Foundation (EFF): A foundation established to address social and legal issues arising from the impact on society of the increasingly pervasive use of computers as a means of communication and information distribution.

Electronic Mail (email): A system whereby a computer user can exchange messages with other computer users (or groups of users) via a communications network. Electronic mail is one of the most popular uses of the Internet.

Email Address: The domain-based or UUCP address that is used to send electronic mail to a specified destination.

Encapsulation: The technique used by layered protocols in which a layer adds header information to the protocol data unit (PDU) from the layer above.

For example, in Internet terminology, a packet contains a header from the physical layer, followed by a header from the network layer (IP), followed by a header from the transport layer (TCP), and followed by the application protocol data. This is also called tunneling, especially in reference to Novell's IPX protocol.

Encryption: Encryption is the manipulation of a packet's data in order to prevent any but the intended recipient from reading that data. There are many types of data encryption, and they are the basis of network security. See also: Data Encryption Standard.

Ethernet: A computer network cabling system designed by Xerox in the late 1970s. Originally Ethernet ran at 3 megabits per second (mps) over thick coaxial cable. Current Ethernet runs at 10mps over fiber, twisted-pair, and several coaxial cable types.

EtherTalk: Networking protocol used by Apple equipment connected directly to Ethernet. Apple equipment on PhoneNet uses LocalTalk.

F

FAQ: Frequently Asked Questions.

FDDI: Fiber Distributed Data Interface. A high-speed (100Mb/s) LAN standard. The underlying medium is fiber optics, and the topology is a dual-attached, counter-rotating token ring.

File Transfer: The copying of a file from one computer to another over a computer network.

Finger: A standard TCP/IP program for gaining access to user information. "Finger user@hostname" might yield the user's full name, time last logged in, telephone number, and other user definable information. Frequently used by an attacker to gain information on a remote server.

For Your Information (FYI): A sub-series of RFCs that are not technical standards or descriptions of protocols. FYIs convey general information about topics related to TCP/IP or the Internet.

FQDN: Fully Qualified Domain Name.

Fragment: A portion of a packet. When a router is forwarding an IP packet to a network that has a maximum packet size larger than the allowable packet size, it is forced to break up that packet into multiple fragments. The IP layer at the destination host reassembles these fragments.

Frame: A frame is a data link layer "packet" which contains the header and trailer information required by the physical medium. That is, network layer packets are encapsulated to become frames.

FTP: File Transfer Protocol. A protocol that allows a user on one host to access and transfer files to and from another host over a network. Also, FTP is usually the name of the program the user invokes to execute the protocol.
Fully Qualified Domain Name (FQDN): The full domain name of a system, rather than just its hostname. For example, "brick" is a hostname and "brick.eeye.com" is an FQDN.

G

Gateway: The original Internet term for what is now called router or more precisely, IP router. In modern usage, the terms "gateway" and "application gateway" refer to systems that do translation from some native format to another.

H

Hacker: A person who delights in having an intimate understanding of the internal workings of a system, computers and computer networks in particular. The term is often misused in a pejorative context, where "cracker" is the correct term.

Header: The portion of a packet, preceding the actual data, containing source and destination addresses, error checking and other fields. A header is also the part of an electronic mail message that precedes the body of a message and contains, among other things, the message originator, date and time.

Heterogeneous Network: A network running multiple network layer protocols, operating systems, and vendor implementations.

Hierarchical Routing: The complex problem of routing on large networks can be simplified by reducing the size of the networks. This is accomplished by breaking a network into a hierarchy of networks, where each level is responsible for its own routing.

The Internet has three levels: the backbones, the midlevel, and the stub networks. The backbones know how to route between the midlevel, the midlevel knows how to route between the sites, and each site (being an autonomous system) knows how to route internally.

Hop: A term used in routing. A path to a destination on a network is a series of hops, through routers, away from the origin.

Host: A node on the network. Usually refers to a computer that both initiates and accepts network connections.

Host Address: See: Internet address

Hostname: The name assigned to a machine. See also: Fully Qualified Domain Name.

Hub: A device connected to several other devices. In ARCNet, a hub is used to connect several computers together. In a message handling service, a hub is used for the transfer of messages across the network.

I

IEEE: Institute of Electrical and Electronics Engineers

IETF: See: Internet Engineering Task Force

International Organization for Standardization (ISO): A voluntary, non-treaty organization founded in 1946 which is responsible for creating international standards in many areas, including computers and communications. Its members are the national standards organizations of the 89 member countries, including ANSI for the U.S. See also: American National Standards Institute and Open Systems Interconnection.

Internet: (note the capital "I") The largest Internet in the world consisting of large national backbone nets (such as MILNET, NSFNET, and CREN) and a myriad of regional and local campus networks all over the world.
The Internet uses the Internet protocol suite. To be on the Internet you must have IP connectivity—i.e., be able to Telnet to, or ping, other systems. Networks with only e-mail connectivity are not actually classified as being on the Internet.

Internet address: A 32-bit address assigned to hosts using TCP/IP.

Internet Assigned Numbers Authority (IANA): The central registry for various Internet protocol parameters, such as port, protocol and enterprise numbers, and options, codes and types.

Internet Engineering Task Force (IETF): The IETF is a large, open community of network designers, operators, vendors, and researchers whose purpose is to coordinate the operation, management and evolution of the Internet, and to resolve short-range and mid-range protocol and architectural issues.

IETF is a major source of proposals for protocol standards that are submitted to the IAB for final approval. The IETF meets three times a year, and extensive minutes are included in the IETF Proceedings.

Internet Protocol (IP): The Internet Protocol, defined in STD 5, RFC 791, is the network layer for the TCP/IP Protocol Suite. It is a connectionless, best-effort packet switching protocol. See also: packet switching, Request For Comments, and TCP/IP Protocol Suite.

Internet Relay Chat (IRC): A worldwide "party line" protocol that allows one to converse with others in real time. IRC is structured as a network of servers, each of which accepts connections from client programs, one per user. See also: Talk.

Internet: A collection of networks interconnected by a set of routers that allow them to function as a single, large virtual network.

Internet-Draft (I-D): Internet-Drafts are working documents of the IETF, its Areas, and its Working Groups. As the name implies, Internet-Drafts are draft documents. They are valid for a maximum of six months and can be updated, replaced, or made obsolete by other documents at any time. Very often, I-Ds are precursors to RFCs. See also: Internet Engineering Task Force and Request For Comments.

Interoperability: The ability of software and hardware to communicate meaningfully on multiple machines from multiple vendors.

IP: See: Internet Protocol

IP address: The 32-bit address defined by the Internet Protocol in STD 5, RFC 791. It is usually represented in dotted decimal notation.

IP Datagram: See: Datagram

IPX: Internetwork Packet eXchange. Novell's proprietary protocol used by Netware. A router with IPX routing can interconnect LANs so that Novell Netware clients and servers can communicate. See also: Local Area Network.

IRC: See: Internet Relay Chat

ISDN: Integrated Services Digital Network. This is an emerging technology that is beginning to be offered by the telephone carriers of the world. ISDN combines voice and digital network services in a single medium making it possible to offer customers digital data services as well as voice connections through a single "wire."

ISO: See: International Organization for Standardization

K
Kerberos: Kerberos is the security system of MIT’s Project Athena. It is based on symmetric key cryptography. See also: Encryption.

L

LAN: See: Local Area Network

Layer: Communication networks for computers can be organized as a set of more or less independent protocols, each in a different layer (also called level). The lowest layer governs direct host-to-host communication between the hardware on different hosts; the highest consists of user applications. Each layer builds on the layer beneath it. For each layer, programs on different hosts use protocols appropriate to the layer to communicate with each other.

TCP/IP has five layers of protocols; OSI has seven. The advantages of different layers of protocols is that the methods of passing information from one layer to another are specified clearly as part of the protocol suite, and changes within a protocol layer are prevented from affecting the other layers. This greatly simplifies the task of designing and maintaining communication programs. See also: Open Systems Interconnection and TCP/IP Protocol Suite.

Listserv: An automated mailing list distribution system.

Local Area Network (LAN): A data network intended to serve an area of only a few square kilometers or less. Because the network is known to cover only a small area, optimizations can be made in the network signal protocols that permit data rates up to 100Mb/s. See also: Ethernet, Fiber Distributed Data Interface, Token Ring, and Wide Area Network.

LocalTalk: Networking protocol used by Macintosh computers to communicate over PhoneNet.

M

MAC Address: The physical hardware address of a device connected to a shared media.

Mail Gateway: A machine that connects two or more electronic mail systems (especially dissimilar mail systems on two different networks) and transfers messages between them. Sometimes the mapping and translation can be quite complex, and generally it requires a store-and-forward scheme whereby the message is received from one system completely and goes through suitable translations before it is transmitted to the next system.

Mail Server: A software program that distributes files or information in response to requests sent via email.

Mailing List: A list of email addresses, used by a mail exploder, to forward messages to groups of people. Generally, a mailing list is used to discuss a certain set of topics, and different mailing lists discuss different topics. A mailing list can be moderated. This means that messages sent to the list are actually sent to a moderator who determines whether or not to send the messages on to everyone else.

MAN: Metropolitan Area Network.

Management Information Base (MIB): The set of parameters an SNMP management station can query or set in the SNMP agent of a network device (e.g., router). Standard, minimal MIBs have been defined, and vendors often have Private enterprise MIBs. In theory, any SNMP manager can talk to any SNMP agent with a properly defined MIB. See also: Client-Server Model and Simple Network Management Protocol.

Maximum Transmission Unit (MTU): The largest frame length that can be sent on a physical medium. See also: Fragmentation and Frame.
MDF: Main Distribution Frame. The main "telecommunications closet" in a building.

Metropolitan Area Network (MAN): A data network intended to serve an area approximating that of a large city. Such networks are being implemented by innovative techniques, such as running fiber cables through subway tunnels. A popular example of a MAN is SMDS. See also: Local Area Network, Switched Multimegabit Data Service, and Wide Area Network.

MIB: See: Management Information Base

Mid-level network: Mid-level networks (a.k.a. regionals) make up the second level of the Internet hierarchy. They are the transit networks that connect the stub networks to the backbone networks. See also: Backbone and Internet.

MIME: See: Multipurpose Internet Mail Extensions

Modem: A device used to permit computers and terminals to communicate over telephone lines.

Moderator: A person, or small group of people, who manage moderated mailing lists and newsgroups. Moderators are responsible for determining which email submissions are passed on to the list. See also: Electronic Mail, Mailing List, and Usenet.

MTU: See: Maximum Transmission Unit.

Multicast: A packet with a special destination address that multiple nodes on the network can be willing to receive. See also: Broadcast.

Multihomed Host: A host that has more than one connection to a network. The host can send and receive data over any of the links but does not route traffic for other nodes.

Multiport Repeater: An Ethernet device, typically with 8 thinnet ports and one transceiver cable port.

Multipurpose Internet Mail Extensions (MIME): An extension to Internet email that provides the ability to transfer non-textual data, such as graphics, audio and fax. It is defined in RFC 1341. See also: Electronic Mail.

MX Record: Mail Exchange Record. A DNS resource record type indicating which host can handle mail for a particular domain. See also: Domain Name System and Electronic Mail.

N

Name Resolution: The process of mapping a Hostname into the corresponding IP address. See also: DNS.

Name Server: A host that maps Hostnames into IP addresses.

Namespace: A commonly distributed set of names in which all names are unique.

National Institute of Standards and Technology (NIST): United States governmental body that provides assistance in developing standards. Formerly the National Bureau of Standards.

National Science Foundation (NSF): A U.S. government agency whose purpose is to promote the advancement of science. NSF funds science researchers, scientific projects, and infrastructure to improve the quality of scientific research.

The NSFNET, funded by NSF, is an essential part of academic and research communications. It is a high speed "network of networks" which is hierarchical in nature. At the highest level, it is a backbone network, currently comprised of 16 nodes connected to a 45Mb/s facility that spans the continental United States.
Attached to that are mid-level networks, and attached to the midlevels are campus and local networks. NSFNET also has connections out of the U.S. to Canada, Mexico, Europe, and the Pacific Rim. The NSFNET is part of the Internet.

NetBIOS: Network Basic Input Output System. It is the standard interface to networks on IBM PC and compatible systems.

Network Time Protocol (NTP): A protocol that assures accurate local timekeeping with reference to radio and atomic clocks located on the Internet. This protocol is capable of synchronizing distributed clocks within milliseconds over long time periods.

Network: A computer network is a data communications system that interconnects computer systems at various different sites. A network can be composed of any combination of LANs, MANs or WANs.

Network Address: The network portion of an IP address. For a class A network, the network address is the first byte of the IP address. For a class B network, the network address is the first two bytes of the IP address. For a class C network, the network address is the first three bytes of the IP address.

In each case, the remainder is the host address. In the Internet, assigned network addresses are globally unique. See also: Internet, IP Address, Subnet Address, Host Address, and Internet Registry.

NFS: Network File System. A protocol developed by Sun Microsystems, and defined in RFC 1094, which allows a computer system to access files over a network as if they were on its local disks. This protocol has been incorporated in products by more than two hundred companies, and is now a de facto Internet standard.

NIC: Network Information Center. A NIC provides information, assistance and services to network users. See also: NOC.

NIC.DDN.MIL: This is the domain name of the DDN NIC. See also: Domain Name System and Network Information Center.

NIS: Network Information Services. It is a set of services, generally provided by a NIC, to assist users in using the network. See also: Network Information Center.

NIST: See: National Institute of Standards and Technology

NNTP: Network News Transfer Protocol. A protocol, defined in RFC 977, for the distribution, inquiry, retrieval, and posting of news articles. See also: Usenet.

NOC: Network Operations Center. A location from which the operation of a network or Internet is monitored. Additionally, this center usually serves as a clearinghouse for connectivity problems and efforts to resolve those problems. See also: NIC.

Node: An addressable device attached to a computer network. See also: Host and Router.

NSF: See: National Science Foundation.

NSFNet: The National Science Foundation Network. A collection of local, regional, and mid-level networks in the U.S. tied together by a high-speed backbone. NSFNET provides scientists access to a number of supercomputers across the country.

NTP: See: Network Time Protocol
Octet: An octet is 8 bits. This term is used in networking, rather than byte, because some systems have bytes that are not 8 bits long.

Open Shortest-Path First Interior Gateway Protocol (OSPF): A link state, as opposed to distance vector, routing protocol. It is an Internet standard IGP defined in RFC 1247. See also: Interior Gateway Protocol and Routing Information Protocol.

Open Systems Interconnection (OSI): A suite of protocols, designed by ISO committees, to be the international standard computer network architecture. See also: International Organization for Standardization.

OSI Layer 1: Physical layer. The layer that provides the means to activate and use physical connections for bit transmission. In plain terms, the Physical Layer provides the procedures for transferring a single bit across a Physical Media.

OSI Layer 2: Data Link Layer. This layer handles the movement and routing of packets around a network.

OSI Layer 3: Network Layer. The layer that is responsible for routing, switching, and sub network access across the entire OSI environment.

OSI Layer 4: Transport Layer. The layer that is responsible for reliable end-to-end data transfer between end systems.

OSI Layer 5: Session Layer. The layer that provides the means for dialogue control between end systems.

OSI Layer 6: Presentation Layer. The layer that determines how Application information is represented (i.e., encoded) while in transit between two end systems.

OSI Layer 7: Application Layer. The top-most layer of the OSI Model. It provides such communication services as electronic mail and file transfer.

OSI Reference Model: A seven-layer structure designed to describe computer network architectures and the way that data passes through them. This model was developed by the ISO in 1978 to clearly define the interfaces in multi-vendor networks, and to provide users of those networks with conceptual guidelines in the construction of such networks. See also: International Organization for Standardization.

OSPF: See: Open Shortest-Path First Interior Gateway Protocol

Packet Switching Node (PSN): A dedicated computer, the purpose of which is to accept, route and forward packets in a packet switched network. See also: packet switching, router.

Packet: The unit of data sent across a network. "Packet" a generic term used to describe unit of data at all levels of the protocol stack, but it is most correctly used to describe application data units. See also: Datagram and Frame.

Packet Switching: A communications paradigm in which packets (messages) are individually routed between hosts, with no previously established communication path. See also: Circuit Switching, Connection-Oriented, and Connectionless.

Physical Media: Any means in the physical world for transferring signals between OSI systems. Considered to be outside the OSI Reference Model, and therefore sometimes referred to as "Layer 0." The physical connector to the media can be considered as defining the bottom interface of the Physical Layer—i.e., the bottom of the OSI Reference Model.
PING: Packet Internet Groper. A program used to test reach ability of destinations by sending them an ICMP echo request and waiting for a reply.

Point Of Presence (POP): A site where there exists a collection of telecommunications equipment, usually digital leased lines and multi-protocol routers.

Point-to-Point Protocol (PPP): The Point-to-Point Protocol, defined in RFC 1171, provides a method for transmitting packets over serial point-to-point links. See also: Serial Line IP.

POP: See: Post Office Protocol and Point Of Presence

Port: A port in the network sense is the pathway that a computer uses to transmit and receive data.

Post Office Protocol (POP): A protocol designed to allow single user hosts to read mail from a server. There are three versions: POP, POP2, and POP3. Latter versions are NOT compatible with earlier versions. See also: Email.

Postmaster: The person responsible for taking care of email problems, answering queries about users, and other related work at a site.

PPP: See: Point-to-Point Protocol

Privacy Enhanced Mail (PEM): Internet email that provides confidentiality, authentication and message integrity using various encryption methods.

Protocol: A formal description of message formats and the rules two computers must follow to exchange those messages. Protocols can describe low-level details of machine-to-machine interfaces (e.g., the order in which bits and bytes are sent across a wire) or high-level exchanges between allocation programs (e.g., the way in which two programs transfer a file across the Internet).

Protocol Converter: A device/program that translates between different protocols that serve similar functions (e.g., TCP and TP4).

Protocol Stack: A layered set of protocols that work together to provide a set of network functions. See also: Layer and Protocol.

Proxy ARP: The technique in which one machine, usually a router, answers ARP requests intended for another machine. By "faking" its identity, the router accepts responsibility for routing packets to the "real" destination. Proxy ARP allows a site to use a single IP address with two physical networks. See also: Address Resolution Protocol

PSN: See: Packet Switch Node.

Q

Queue: A backlog of packets or connections awaiting processing.

R

RARP: Reverse Address Resolution Protocol. A protocol, defined in RFC 903, which provides the reverse function of ARP. RARP maps a hardware (MAC) address to an Internet address.

Diskless nodes primarily use RARP when they first initialize to find their Internet address. See also: Address Resolution Protocol, BOOTP, Internet Address, and MAC Address.
RBOC: Regional Bell Operating Company

Reassembly: The IP process in which a previously fragmented packet is reassembled before being passed to the transport layer. See also: Fragmentation.

Remote Procedure Call (RPC): An easy and popular paradigm for implementing the client-server model of distributed computing. In general, a request is sent to a remote system to execute a designated procedure, using arguments supplied, and the result returned to the caller.

There are many variations and subtleties in various implementations, resulting in a variety of different (incompatible) RPC protocols.

Remote Login: Operating on a remote computer, using a protocol over a computer network, as though locally attached. See also: Telnet.

Repeater: A device that propagates electrical signals from one cable to another without making routing decisions or providing packet filtering. In OSI terminology, a repeater is a Physical Layer intermediate system. See Bridge and Router.

RFC: Request For Comments. This is the document series, begun in 1969, which describes the Internet suite of protocols and related experiments. Not all (in fact very few) RFCs describe Internet standards, but all Internet standards are written up as RFCs.

The RFC series of documents is unusual in that the proposed protocols are forwarded by the Internet research and development community, acting on their own behalf, as opposed to the formally reviewed and standardized protocols that are promoted by organizations such as CCITT and ANSI. See also: For Your Information and STD.

Route: The path that network traffic takes from its source to its destination. Also, this can be a possible path from a given host to another host or destination.

Router: A system that makes decisions about which of several paths that network (or Internet) traffic follows. To do this, the system uses a routing protocol to gain information about the network, and algorithms to choose the best route based on several criteria known as "routing metrics."

In OSI terminology, a router is a Network Layer intermediate system. See also: Gateway, Bridge, and Repeater.

Routing: The process of selecting the correct interface and next hop for a packet being forwarded. See also: Router.

Routing domain: A set of routers exchanging routing information within an administrative domain.

RPC: See: Remote Procedure Call

S

Server: A provider of resources (e.g., file servers and name servers). See also: Client, DNS, and NFS.

Services: A service is a program running on a remote machine that in one way or another provides a service. For example, when you visit a Web site, the remote server displays a Web page via its Web server service.

SLIP: Serial Line IP. This is a protocol used to run IP over serial lines, such as telephone circuits or RS-232 cables, interconnecting two systems. SLIP is defined in RFC 1055. See also: PPP

SMTP: Simple Mail Transfer Protocol. A protocol, defined in STD 10, RFC 821, used to transfer electronic mail between computers. It is a server-to-server protocol, so other protocols are used to access the messages.
Glossary

SNA: Systems Network Architecture. A proprietary networking architecture used by IBM and IBM-compatible mainframe computers.

SNMP: Simple Network Management Protocol. The Internet standard protocol, defined in STD 15, RFC 1157, developed to manage nodes on an IP network. It is currently possible to manage wiring hubs, toasters, jukeboxes, and so on.

SQL: Structured Query Language. This is the international standard language for defining and accessing relational databases. For example, Metaphor uses SQL to communicate with Sybase and other databases on remote systems.

Stream-Oriented: A type of transport service that allows its client to send data in a continuous stream. The transport service guarantees that all data will be delivered to the other end in the same order as sent and without duplicates.

Structure of Management Information (SMI): The rules used to define the objects that can be accessed via a network management protocol. This protocol is defined in STD 16, RFC 1155. See also: MIB.

Subnet: A portion of a network, which can be a physically independent network segment, which shares a network address with other portions of the network and is distinguished by a subnet number. A subnet is to a network what a network is to an Internet. See also: Internet.

Subnet Address: The subnet portion of an IP address. In a subnetworked network, the host portion of an IP address is split into a subnet portion and a host portion using an address (subnet) mask. See also: Address Mask, IP Address, Network Address, and Host Address.

Subnet Mask: An IP address used in configuring a system. It shows which part of the address is actually the subnet number, for routing purposes. For example: 255.255.0.0

T

T1: An AT&T term for a digital carrier facility used to transmit a DS-1 formatted digital signal at 1.544 megabits per second.

T3: A term for a digital carrier facility used to transmit a DS-3 formatted digital signal at 44.746 megabits per second.

Talk: A protocol that allows two people on remote computers to communicate in a real-time fashion. See also: IRC.

TCP: Transmission Control Protocol. An Internet Standard transport layer protocol defined in STD 7, RFC 793. It is connection-oriented and stream-oriented, as opposed to UDP.

TCP/IP Protocol Suite: Transmission Control Protocol over Internet Protocol. This is a common shorthand that refers to the suite of transport and application protocols that runs over IP. See also: ICMP, TCP, UDP, FTP, Telnet, SMTP, and SNMP.

Telnet: The virtual terminal protocol in the Internet suite of protocols. This allows users of one host to log into a remote host and interact as normal terminal users of that host.

Terminal Emulator: A program that allows a computer to emulate a terminal. The workstation thus appears as a terminal to the remote host.

Terminal Server: A device that connects many terminals to a LAN through one network connection. A terminal server can also connect many network users to its asynchronous ports for dial-out and printer access.

Thinnet: Thin (coaxial) Ethernet cable. Generally used between a multiport repeater and individual workstations.
Glossary

TN3270: A variant of the Telnet program that allows users to attach to IBM mainframes and use the mainframe as if they had a 3270 or similar terminal.

Token Ring: A token ring is a type of LAN with nodes wired into a ring. Each node constantly passes a control message (token) on to the next; whichever node has the token can send a message. Often, “Token Ring” is used to refer to the IEEE 802.5 token ring standard, which is the most common type of token ring.

Topology: A network topology shows the computers and the links between them. A network layer must stay abreast of the current network topology to be able to route packets to their final destination.

Transceiver: Transmitter-receiver. This is the physical device that connects a host interface to a network, such as Ethernet. Ethernet transceivers contain electronics that apply signals to the cable and sense collisions. Transceivers are generally associated with a piece of network gear (e.g. repeater, bridge, workstation).

Transit Network: A transit network passes traffic between networks in addition to carrying traffic for its own hosts. It must have paths to at least two other networks.

Trojan Horse: A computer program that carries within itself a means to allow the creator of the program access to the system using it. See also: Virus and Worm.

TSO: Telecommunications Services Outlet. This is a "wall jack" or faceplate in an office, lab, or other work area.

Tunneling: Tunneling refers to encapsulation of protocol A within protocol B, such that A treats B as though it were a data link layer. Tunneling is used to get data between administrative domains that use a protocol that is not supported by the Internet that connects those domains.

Twisted Pair: A wiring scheme that uses standard pairs of copper wires. Twisted pair might be used for normal telephone connections or serial data.

Twisted Pair Ethernet: Ethernet running over twisted pair wiring. Ethernet can also run over a variety of other media.

Twisted Pair Hub: An Ethernet device, typically with 8 twisted pair ports and one transceiver cable port.

UDP: User Datagram Protocol. An Internet Standard transport layer protocol defined in STD 6, RFC 768. It is a connectionless protocol that adds a level of reliability and multiplexing to IP. See also: Connectionless and TCP.

UNIX: Popular multi-user operating system for scientific workstations and file and database servers.

URL: Universal Resource Locator, used in World-Wide Web (WWW).

Usenet: A collection of thousands of topically named newsgroups, the computers that run the protocols, and the people who read and submit Usenet news. Not all Internet hosts subscribe to Usenet and not all Usenet hosts are on the Internet. See also: NNTP, UUCP.

UTC: Universal Time Coordinated. This is Greenwich Mean Time.

UUCP: UNIX-to-UNIX Copy. This was initially a program run under the UNIX operating system that allowed one UNIX system to send files to another UNIX system via dial-up phone lines.

Today, the term is more commonly used to describe the large international network that uses the UUCP protocol to pass news and electronic mail. See also: Electronic Mail, Usenet.
Virtual Circuit: A network service that provides connection-oriented service regardless of the underlying network structure. See also: Connection-Oriented.

Virus: A program that replicates itself on computer systems by incorporating itself into other programs that are shared among computer systems. See also: Trojan Horse and Worm.

W

WAN: See: Wide Area Network

White Pages: The Internet supports several databases that contain basic information about users, such as email addresses, telephone numbers, and postal addresses. These databases can be searched to get information about particular individuals.

WHOIS: An Internet program that allows users to query a database of people and other Internet entities, such as domains, networks, and hosts, kept at the DDN NIC. The information for people shows a person's company name, address, phone number and email address.

Wide Area Network: A network, usually constructed with serial lines, which covers a large geographic area.

Workstation: A node on the network typically associated with a single user (e.g., a PC or a Macintosh).

World Wide Web: A hypertext-based, distributed information system created by researchers at CERN in Switzerland. Users can create, edit or browse hypertext documents. The clients and servers are freely available.

Worm: A computer program that replicates itself and is self-propagating. Worms, as opposed to viruses, are meant to spawn in network environments. Network worms were first defined by Shoch & Hupp of Xerox in ACM Communications (March 1982).

The Internet worm of November 1988 is perhaps the most famous; it successfully propagated itself on over 6,000 systems across the Internet. See also: Trojan Horse and Virus.

WWW: See: World Wide Web

WYSIWYG: What You See is What You Get

Y

Yellow Pages (YP): A service used on UNIX hosts to manage databases distributed across a network.

Z

Zone: A logical group of network devices (AppleTalk).